Answer:
4
Step-by-step explanation:
set

constrain:

Partial derivatives:

Lagrange multiplier:

![\left[\begin{array}{ccc}1\\1\end{array}\right]=a\left[\begin{array}{ccc}2x\\2y\end{array}\right]+b\left[\begin{array}{ccc}3x^2\\3y^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2x%5C%5C2y%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3x%5E2%5C%5C3y%5E2%5Cend%7Barray%7D%5Cright%5D)
4 equations:

By solving:

Second mathod:
Solve for x^2+y^2 = 7, x^3+y^3=10 first:

The maximum is 4
<h3>Given:</h3>
<h3>Volume of the cone:</h3>



<h3>Volume of the cylinder:</h3>



<h3>Total volume:</h3>


<u>Hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>cone</u><u> </u><u>shape</u><u> </u><u>is</u><u> </u><u>4188.7</u><u>9</u><u> </u><u>cubic</u><u> </u><u>centimeters</u><u>.</u>
1/27
1/27
125
Step-by-step explanation:
Given that,
a - b = 3
9^(1/2b) /3^a = 3^(2/2b) /3^a
= 3^b/3^a
= 3^(b-a)
= 3^(-3)
= 27^(-1)
= 1/27
27^(1/3b) /9^(1/2a) = 3^(3/3b) /3^(2/2a)
= 3^b/3^a
= 3^(b-a)
= 3^(-3)
= 27^(-1)
= 1/27
125^(1/3a) /25^(1/2b) = 5^(3/3a) /5^(2/2b)
= 5^a/5^b
= 5^(a- b)
= 5^3
= 125
Answer:
B (r= 1/6s)
Step-by-step explanation:
If you just work out each option, you'll see that "s" multiplied by 1/6 gets r.