Answer:
x = 9; y = 12; u = 24; v = 32
Step-by-step explanation:
The corresponding sides of similar triangles are in the same ratio to each other.
       3/5 = (3 + x)/20     Multiply each side by 20
20×3/5 = 3 + x
        12 = 3 + x             Subtract 3 from each side
         x = 9
=====
       4/5 = (4 + y)/20     Multiply each side by 20
20×4/5 = 4 + y
        16 = 4 + y              Subtract 4 from each side
         y = 12
=====
       3/5 = (3 + x + u)/60     Multiply each side by 60
60×3/5 = 3 + x + u
        36 = 3 + x + u             Insert the value of x
        36 = 3 + 9 + u
        36 = 12 + u                 Subtract 12 from each side
          u = 24
=====
       4/5 = (4 + y + v)/60     Multiply each side by 60
60×4/5 = 4 + y + v
        48 = 4 + y + v             Insert the value of y
        48 = 4 + 12 + v
        48 = 16 + v                 Subtract 16 from each side
          v = 32
x = 9; y = 12; u = 24; v = 32