Answer: It should be used 2 for type-A and 3 for type-B to minimize the cost.
Step-by-step explanation: As it is stipulated, <u>x</u> relates to type-A and y to type-B.
Type-A has 60 deluxe cabins and B has 80. It is needed a minimum of 360 deluxe cabins, so:
60x + 80y ≤ 360
For the standard cabin, there are in A 160 and in B 120. The need is for 680, so:
160x + 120y ≤ 680
To calculate how many of each type you need:
60x + 80y ≤ 360
160x + 120y ≤ 680
Isolating x from the first equation:
x =
Substituing x into the second equation:
160() + 120y = 680
-3200y+1800y = 10200 - 14400
1400y = 4200
y = 3
With y, find x:
x =
x =
x = 2
To determine the cost:
cost = 42,000x + 51,000y
cost = 42000.2 + 51000.3
cost = 161400
To keep it in a minimun cost, it is needed 2 vessels of Type-A and 3 vessels of Type-B, to a cost of $161400
Answer:
Step-by-step explanation:
new length=15+x
width=19+x
then area=(15+x)×(19+x)=285+15x+19x+x²=x²+34x+285 ft²
original area=15×19=285 ft²
then 285+98=x²+34x+285
or
x²+34x-98=0
x²+34x+17²=98+17²
(x+17)²=98+289=387
x+17=√387=3√43
x=3√43-17 ft
Answer:
A
Step-by-step explanation:
-x + 2y = 8
5x + 2y = -4
+ x. -2y. -8
6x = -12
÷6. ÷6
x = -2
5(-2) + 2y = -4
-10 + 2y = -4
+10. +10
2y = 6
÷2. ÷2
y = 3