We are asked to determine the value of a such that the function f(x) = ax^2 + 5 is fit for the point given (-1,2). In this case, we substitute 2 to y and -1 to x. The result is then 2 = a*(-1)^2 + 5 ; 2 = a + 5; a is then equal to -3
Answer:
3460
Step-by-step explanation:
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
15/4 +6y
Step-by-step explanation:
See Image below:)
Answer:
If A and B are two rational numbers such that A<B
Then X = A + (B-A)/π would be an example of an irrational number
such that A < X < B
Hope this helps
Please give me brainliest