Answer:
![\sqrt[3]{0.95} \approx 0.983\\\\\\\sqrt[3]{1.1} \approx 1.033](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.983%5C%5C%5C%5C%5C%5C%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.033)
Step-by-step explanation:
The function is:
![g(x) =\sqrt[3]{1+x}](https://tex.z-dn.net/?f=g%28x%29%20%3D%5Csqrt%5B3%5D%7B1%2Bx%7D)
We can find a linear aproximation around a point with a Taylor's series:

The value of g(a) is
![g(a)=g(0)=\sqrt[3]{1+0}=1](https://tex.z-dn.net/?f=g%28a%29%3Dg%280%29%3D%5Csqrt%5B3%5D%7B1%2B0%7D%3D1)
We have to calculate the firste derivative of g(x):
![g'(x)=\frac{d}{dx}[(1+x)^ {1/3}]=(1/3)(1+x)^{-2/3}=\frac{1}{3(1+x)^{2/3}}](https://tex.z-dn.net/?f=g%27%28x%29%3D%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%2Bx%29%5E%20%7B1%2F3%7D%5D%3D%281%2F3%29%281%2Bx%29%5E%7B-2%2F3%7D%3D%5Cfrac%7B1%7D%7B3%281%2Bx%29%5E%7B2%2F3%7D%7D)
Then, we calculate g'(a)

The linear approximation is:

Calculate ![\sqrt[3]{0.95}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D)
We can use the linear approximation to calculate this, with x=-0.05.
![0.95=1+x\rightarrow x=-0.05\\\\\sqrt[3]{0.95} \approx 1+\frac{(-0.05)}{3} =1-0.017=0.983](https://tex.z-dn.net/?f=0.95%3D1%2Bx%5Crightarrow%20x%3D-0.05%5C%5C%5C%5C%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%201%2B%5Cfrac%7B%28-0.05%29%7D%7B3%7D%20%3D1-0.017%3D0.983)
Calculate ![\sqrt[3]{1.1}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D)
We can use the linear approximation to calculate this, with x=0.1.
![1.1=1+x\rightarrow x=0.1\\\\\sqrt[3]{1.1} \approx 1+\frac{(0.1)}{3} =1+0.033=1.033](https://tex.z-dn.net/?f=1.1%3D1%2Bx%5Crightarrow%20x%3D0.1%5C%5C%5C%5C%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201%2B%5Cfrac%7B%280.1%29%7D%7B3%7D%20%3D1%2B0.033%3D1.033)