1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
2 years ago
6

A number that is being divided.

Mathematics
1 answer:
olga55 [171]2 years ago
3 0

Answer:

5

Step-by-step explanation:

12-7=5

You might be interested in
If 2x + 5 = 8x, then 12x = ?A.5B.10C.15D.20
butalik [34]
<h2>Answer:</h2>10.\text{ Option B is correct}

<h2>Explanation:</h2>

Given the equation expressed as:

2x+5=8x

First, we need to calculate the value of "x" from the given expression.

Step 1: Given the equation 2x + 5 = 8x

Step 2: Subtract 5 from both sides:

\begin{gathered} 2x+5-5=8x-5 \\ 2x+\cancel{5}-\cancel{5}=8x-5 \\ 2x=8x-5 \end{gathered}

Step 3: Subtract 8x from both sides

\begin{gathered} 2x-8x=8x-8x-5 \\ -6x=\cancel{8x}-\cancel{8x}-5 \\ -6x=-5 \end{gathered}

Step 4: Divide both sides by -6

\begin{gathered} \frac{-6x}{-6}=\frac{-5}{-6} \\ x=\frac{5}{6} \end{gathered}

Step 5: Get the value of 12x. Substitute x = 5/6 into the expression to have:

\begin{gathered} 12x=12(\frac{5}{6}) \\ 12x=\cancel{12}^2(\frac{5}{\cancel{6}^1}) \\ 12x=2\times5 \\ 12x=10 \end{gathered}

Therefore the value of 12x is 10

3 0
9 months ago
Which of the following equation has x = 0 as a solution?
Sophie [7]

Step-by-step explanation:

is this the question you asked

3 0
2 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
This is 8th grade math.
Mrrafil [7]
X = 1 , y = - 2


Hope this helped
4 0
2 years ago
Read 2 more answers
In june 2005 peter mailed a package from his local post office in fayetteville north carolina to a friend in radford virginia fo
erik [133]

0.23w = 2.07

w = 2.07 ÷ 0.23

w = 9 ounces

7 0
3 years ago
Other questions:
  • For the upcoming holiday season, Dorothy wants to mold 20 bars of chocolate into tiny pyramids. Each bar of chocolate contains 6
    9·2 answers
  • The table below shows the fifth powers of different numbers:
    14·1 answer
  • What is 37.09 in expanded form
    10·1 answer
  • 74. What is the slope of the line 6x – 3y = 54 ?.
    15·2 answers
  • PLEASE HELP ASAP! I attached the short screenshot of the five questions. If you aren't able to answer all, it would be helpful i
    13·1 answer
  • Colin drew the floor plan of his bedroom shown below. What is the area of his bedroom in square feet?
    11·2 answers
  • Samual has an egg farm with a volume of 375 in.³ with the width of an ant farm is 2.5 inches and the length is 15 inches what is
    10·1 answer
  • Evaluate the expression.
    8·1 answer
  • What is 0.66% of 9,500 is
    9·2 answers
  • Write the equation of the line that passes through (-3,6) with a slope of -2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!