Answer:
c = 60.65 cm
Step-by-step explanation:
Given that,
The two sides of a triangle are 33 cm and 37 cm.
The angle between these two sides is 120°.
We need to find the length of the third side of the triangle. Let c is the third side. Using cosine rule,

a = 33 cm, b = 37 cm and C is 120°
So,

So, the length of the third side of the triangle is 60.65 cm.
Answer:
In standard form it is x^4 - 12x^3y + 54x^2y^2 - 108x y^3 + 81y^4.
Step-by-step explanation:
(3y)^4 + 4C1(3y)^3(-x) + 4C2(3y)^2(-x)^2 + 4C3(3y)(-x)^3 + (-x)^4
= 81y^4 - 108y^3x + 54y^2x^2 - 12yx^3 + x^4
36 throws because you divide 60 by five and get 12 and then multiply 3 by 12 giving you 36, are you sure this is high school
Answer:

Step-by-step explanation: