Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
Explanation:
voltage = current × resistance
5.
12 V = 4.2 A × resistance
resistance = 12 V / 4.2 A = 2.857142857... Ohm
FYI :
4.2 A would be a lot for a small electronic device like a CD player. that would be 12×4.2 = 50.4 Watt, and the CD player would get really hot.
6.
120 V = current × 12 Ohm
current = 120 V / 12 Ohm = 10 A
Answer:
The permittivity of rubber is 
Explanation:
From the question we are told that
The magnitude of the point charge is 
The diameter of the rubber shell is 
The Electric field inside the rubber shell is 
The radius of the rubber is mathematically evaluated as

Generally the electric field for a point is in an insulator(rubber) is mathematically represented as
Where
is the permittivity of rubber
=> 
=> 
substituting values


Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
Answer:
Explanation:
Did you ever end up getting an answer? Or like did you find out which segment it was?