Answer:
55.7 N
Explanation:
The density of aluminum is 2710 kg/m³. So its volume is:
V = (9 kg) / (2710 kg/m³)
V = 0.00332 m³
The apparent weight is the actual weight minus the buoyant force.
N = mg − B
N = mg − ρVg
N = g (m − ρV)
N = (9.8 m/s²) (9 kg − (1000 kg/m³) (0.0332 m³))
N = 55.7 N
Answer:
<em>t</em><em>h</em><em>e</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>s</em><em> </em><em>b</em><em> </em><em>.</em><em>G</em><em>i</em><em>l</em><em>b</em><em>e</em><em>r</em><em>t</em><em> </em>
Explanation:
<em>h</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em><em> </em><em>!</em>
Answer:

Explanation:
Given that,
The mass of a Moon, 
The mass of the Earth, 
The moon's mean orbit distance around the earth is, 
We need to find the gravitational force exerted on the moon by the Earth.
The formula of gravitational force is given by :

So, the required force is
.
When sedimentary rock is exposed to heat and pressure it changes into METAMORPHIC ROCK.
Heat and pressure have the capacity to change a rock into a completely new type of rock. An igneous rock or a sedimentary rock can be changed into a metamorphic rock as a result of heat and pressure which the rock is subjected to. Metamorphic rocks are usually formed from already existing rocks that are exposed to pressure and heat.
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m