Answer:
B. chemical only.
Explanation:
In the process of respiration which is a chemical process where organic compound is released. In this process exergonic reaction takes place in which compound changes into different ones.
Following are the two types of respiration:-
1] Aerobic respiration:- In this type of respiration requirement of oxygen is more and energy released is more.
2] Anaerobic respiration:- In this type of respiration oxygen requirement is less and energy released is also less.
We have F = kx or ma = kx where m and k are constants. Therefore, if x is halved, a must be halved too.
Answer:
80 m/s
Explanation:
Given:
a = -5 m/s²
v = 0 m/s
Δx = 640 m
Find: v₀
v² = v₀² + 2a(x − x₀)
(0 m/s)² = v₀² + 2(-5 m/s²) (640 m)
v₀ = 80 m/s
If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as
where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get
Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as
Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals