1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
9

Find m2ABC (3x + 8) (5x - 40)

Mathematics
1 answer:
Virty [35]3 years ago
7 0

Answer:

Step-by-step explanation:

(3x + 8) =(5x - 40)

Remove the brackets and replace 3x with -40 and -40 with 3x.

40 + 8 =5x - 3x  (Remember that when you replace, the signs change from negative to positive and vise versa)

Solve for x. x= -24

Replace x with its value.

3(-24)+ 8= -64

5(-24) - 40= -160

You might be interested in
A sound engineer is positioning a cardioid microphone for a music concert. Which equation corresponds to a microphone facing the
Flura [38]

Answer:

D r = 4 − 4 cos(θ)

Step-by-step explanation:

Right on edge

5 0
3 years ago
Mr. Thomas deposited 2500 in a new bank account. The bank pays 6.5% interest compounded annually on this account. He makes no de
kotykmax [81]

Answer:

ghjghf

Step-by-step explanation:

8 0
3 years ago
Find the average velocity of the function over the given interval.
snow_lady [41]

Answer:

Average velocity of the function over the given interval

              =  log(\frac{7}{4} ) -2

Step-by-step explanation:

<u><em>Explanation:-</em></u>

Given function y = 3/x -2 ...(i)

The average velocity of the function over the given interval

             Average velocity  = \frac{1}{b-a} \int\limits^b_a {(\frac{3}{x} -2)} \, dx

                               =    \frac{1}{7-4} \int\limits^7_4 {(\frac{3}{x} -2)} \, dx

now integrating

                           =   \frac{1}{3}( \int\limits^7_4 {(\frac{3}{x} )} \, dx-2\int\limits^7_4 {1} \, dx )

                           = \frac{1}{3} (3 (log x) - 2 x )_{4} ^{7}

                        =   \frac{1}{3}( (3 (log 7) - 14 )-(3 log 4 -8))

by using formulas

                 log a-log b = log(a/b)

  on simplification , we get                  

                 = \frac{1}{3}( (3 (log 7) -3 log 4 ) - \frac{1}{3} (6)

                = log(\frac{7}{4} ) -2

Average velocity of the function over the given interval

              =  log(\frac{7}{4} ) -2

 

 

6 0
3 years ago
5. Please write the equation of a line in y=mx+b format. Find the SLOPE first then find the Y-INTERCEPT (b) Your answer​
castortr0y [4]

Answer:

y = \frac{5}{3}x-1

Step-by-step explanation:

Let the equation of the line is,

y = mx + b

Here m = slope of the line

b = y-intercept

Slope of a line passing through two points (x_1,y_1) and (x_2,y_2) is,

m = \frac{y_2-y_1}{x_2-x_1}

From the graph attached,

Since, the given line passes through (0, -1) and (3, 4),

Slope 'm' = \frac{4+1}{3-0}

m = \frac{5}{3}

y - intercept 'b' = -1

Therefore, equation of the line will be,

y = \frac{5}{3}x-1

5 0
3 years ago
–3b + –9 = –3<br> what is b
Pavel [41]

plz plz mark brainliest if it helps

6 0
3 years ago
Read 2 more answers
Other questions:
  • A pot is being used to boil off 1 kg of water. The specific energy required to cause the phase change is 2297 kJ/kg. Assuming th
    11·1 answer
  • Please please answer this correctly please label the numbers correctly and please write down your answers correctly
    6·1 answer
  • 15. Add [-6 -2 2] + [-3 2 1].<br> O A. [-3 0 3]<br> O B. [-9-3-5]<br> C. [-6 0 3]<br> D. 1-9 0 3]
    12·1 answer
  • Algebra 1:Help me factor this expression
    11·1 answer
  • What is the answer to12+4=25-
    14·1 answer
  • The width of the rectangle shown below is 8 inches (in.). The length is 3 feet (ft.).
    13·2 answers
  • Can you please help me with this
    15·2 answers
  • What is the answer? Plz help
    12·1 answer
  • Which of the following statements best describe an invertible function? Select all that apply.
    10·1 answer
  • 3. Convert this rate (80km/hr) to a rate measured in m/s​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!