1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
11

6 } " alt="3.96x0.25 - \sqrt{0.0256 } " align="absmiddle" class="latex-formula">
​
Mathematics
1 answer:
kari74 [83]3 years ago
4 0
The correct answer for this problem is 0.83.
You might be interested in
6x + 5y =20 solve for y step by step
Marina CMI [18]

Answer:

Move all terms that don't contain y to the right side and solve.y=4−6x/5

Step-by-step explanation:

4 0
2 years ago
Evaluate S5 for 300 + 150 + 75 + … and select the correct answer below. 18.75 93.75 581.25 145.3125
Savatey [412]

we have that

300 + 150 + 75 +...

Let

a1=300\\ a2=150\\ a3=75

we know that

\frac{a2}{a1} =\frac{150}{300} \\\\ \frac{a2}{a1}=0.5 \\ \\ a2=a1*0.50

\frac{a3}{a2} =\frac{75}{150} \\\\ \frac{a3}{a2}=0.5 \\ \\ a3=a2*0.50

so

a(n+1)=an*0.50

Is a geometric sequence

Find the value of a4

a(4)=a3*0.50

a(4)=75*0.50

a(4)=37.5

Find the value of a5

a(5)=a4*0.50

a(5)=37.5*0.50

a(5)=18.75

Find S5

S5=a1+a2+a3+a4+a5\\ S5=300+150+75+37.5+18.75\\ S5=581.25

therefore

the answer is

581.25

Alternative Method

Applying the formula

S_n=\frac{a_1 (1-r^n)}{1-r} \\\\a_1=300 \\ r=\frac{1}{2}\\\\ S_5=\frac{300(1-(\frac{1}{2})^5)}{1-\frac{1}{2}}\\\\=\frac{300(1-\frac{1}{32})}{\frac{1}{2}}\\\\=\frac{300 \times \frac{31}{32}}{\frac{1}{2}}\\\\=\frac{75 \times \frac{31}{8}}{\frac{1}{2}}\\\\=\frac{\frac{2325}{8}}{\frac{1}{2}}\\\\=\frac{2325}{8} \times 2\\\\=\frac{2325}{4}\\\\=581 \frac{1}{4}\\\\=581.25

therefore

the answer is

581.25

6 0
3 years ago
Read 2 more answers
Name the number that is three more than one-fifth of one-tenth of one-half of 5,000.
bearhunter [10]

Answer:

24 or 29 more numbers

Step-by-step explanation:

6 0
3 years ago
Hello again! This is another Calculus question to be explained.
podryga [215]

Answer:

See explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Functions

  • Function Notation
  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the following and are trying to find the second derivative at <em>x</em> = 2:

\displaystyle f(2) = 2

\displaystyle \frac{dy}{dx} = 6\sqrt{x^2 + 3y^2}

We can differentiate the 1st derivative to obtain the 2nd derivative. Let's start by rewriting the 1st derivative:

\displaystyle \frac{dy}{dx} = 6(x^2 + 3y^2)^\big{\frac{1}{2}}

When we differentiate this, we must follow the Chain Rule:                             \displaystyle \frac{d^2y}{dx^2} = \frac{d}{dx} \Big[ 6(x^2 + 3y^2)^\big{\frac{1}{2}} \Big] \cdot \frac{d}{dx} \Big[ (x^2 + 3y^2) \Big]

Use the Basic Power Rule:

\displaystyle \frac{d^2y}{dx^2} = 3(x^2 + 3y^2)^\big{\frac{-1}{2}} (2x + 6yy')

We know that y' is the notation for the 1st derivative. Substitute in the 1st derivative equation:

\displaystyle \frac{d^2y}{dx^2} = 3(x^2 + 3y^2)^\big{\frac{-1}{2}} \big[ 2x + 6y(6\sqrt{x^2 + 3y^2}) \big]

Simplifying it, we have:

\displaystyle \frac{d^2y}{dx^2} = 3(x^2 + 3y^2)^\big{\frac{-1}{2}} \big[ 2x + 36y\sqrt{x^2 + 3y^2} \big]

We can rewrite the 2nd derivative using exponential rules:

\displaystyle \frac{d^2y}{dx^2} = \frac{3\big[ 2x + 36y\sqrt{x^2 + 3y^2} \big]}{\sqrt{x^2 + 3y^2}}

To evaluate the 2nd derivative at <em>x</em> = 2, simply substitute in <em>x</em> = 2 and the value f(2) = 2 into it:

\displaystyle \frac{d^2y}{dx^2} \bigg| \limits_{x = 2} = \frac{3\big[ 2(2) + 36(2)\sqrt{2^2 + 3(2)^2} \big]}{\sqrt{2^2 + 3(2)^2}}

When we evaluate this using order of operations, we should obtain our answer:

\displaystyle \frac{d^2y}{dx^2} \bigg| \limits_{x = 2} = 219

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
2 years ago
(( all - Same )) ----- Quadrilaterals are polygons
Marina CMI [18]

Answer:

yes

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • What does x equal? Please help
    7·1 answer
  • Which fraction lies between 0.70 and 0.75 on number line?
    14·1 answer
  • What is the approximate circumference of a semicircle with a radius of 6 centimeters?18.8 centimeters37.7 centimeters75.4 centim
    10·1 answer
  • if you apply the changes below to the quadratic parent function f(x)=x^2.which of these in the equation of the new function? shi
    15·1 answer
  • Please help me with this question!
    15·2 answers
  • A pair of boots and a pair of tennis shoes cost 196.12 the different in there cost is 44.38. determine the cost of each pair of
    10·1 answer
  • 5a +8 2ab + 4 simplifies into:
    12·1 answer
  • PLEASE ANSWERR THISSSS
    12·1 answer
  • Solve for letter
    11·1 answer
  • I NEED HELP ASAP PLEASEE!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!