Answer:
standard error = 2.11
Step-by-step explanation:
First we stablish the data that we have for each sample:
<u>Population 1</u> <u>Population </u>2
n₁ = 100 n₂ = 90
x¯1= 95 x¯2 = 75
σ₁ = 14 σ₂ = 15
To calculate the standard error of each sample we would use the formulas:
σ = σ₁/√n₁
σx¯2 = σ₂/√n₂
Now, in order to obtain the standard error of the differences between the two sample means we combine those two formulas to obtain this:
σx¯1 - σ x¯2 = √(σ₁²/n₁ + σ₂²/n₂ )
So as you can see, we used the square root to simplify and now we require the variance of each sample (σ²):
σ₁² = (14)² = 196
σ₂² = (15)² = 225
Now we can proceed to calculate the standard error of the distribution of differences in sample means:
σx¯1 - σx¯2 = √(196/100 + 225/90) = 2.11
This gives an estimate about how far is the difference between the sample means from the actual difference between the populations means.
Answer:
c 32 out of 80 were surveyed
14/4 > 1 is what it looks like.
Bonjour,
answer ≈ 522.92
working
A= 2πrh+2πr^2
=2 x π x 4 x 18+2 x π x 4^2
≈552.92031