It’s a metamorphic rock, so for that it’s rock I also enjoy that anime
B) A ladybug crawling forward at constant rate of 2.5 m/s
<span>Without friction, there will be undamped simple harmonic motion. The force of the spring is proportional to the distance from the equilibrium point. The period of oscillation will be independent of the amplitude.
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Answer:


The motion of the block is downwards with acceleration 1.7 m/s^2.
Explanation:
First, we will calculate the acceleration using the kinematics equations. We will denote the direction along the incline as x-direction.

Newton’s Second Law can be used to find the net force applied on the block in the -x-direction.

Now, let’s investigate the free-body diagram of the block.
Along the x-direction, there are two forces: The x-component of the block’s weight and the kinetic friction force. Therefore,

As for the static friction, we will consider the angle 31.8, but just before the block starts the move.

Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!