Answer:
The limit that 97.5% of the data points will be above is $912.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the limit that 97.5% of the data points will be above.
This is the value of X when Z has a pvalue of 1-0.975 = 0.025. So it is X when Z = -1.96.
So




The limit that 97.5% of the data points will be above is $912.
Answer:
A
Step-by-step explanation:
Divide 165 by 33. Your end answer result should be 1/5 or 20%.
Hope this helps.
Answer:
Yes, as the change in y repeats continuously