Answer:
El área de superficie del cilindro es 6 · π cm², que es igual a 18.85 cm²
El volumen del cilindro es de 9 · π cm³, que es igual a 28.27 cm³
Step-by-step explanation:
Aquí tenemos
El área de superficie del cilindro = Perímetro de base × Altura
= π × D × h
Dónde:
D = diámetro de la base = 1.5 cm
h = Altura del cilindro = 4
∴ Área de superficie = π × 1.5 × 4 = 6 · π cm² = 18.85 cm²
Volumen del cilindro = Área de base × Altura = π · D² / 4 × h
= π × 1.5² / 4 × 4 = 9 · π cm³ = 28.27 cm³.
Answer:
3rd
Step-by-step explanation:
![\bf \stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~\hspace{7em}\stackrel{\textit{volume of a cone}}{V=\cfrac{\pi r^2 h}{3}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{volume of a cylinder}}{V=24\pi }~\hspace{7em}\stackrel{\textit{volume of a cone}}{V=\cfrac{24\pi }{3}}\implies V=8\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~%5Chspace%7B7em%7D%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cone%7D%7D%7BV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D24%5Cpi%20%7D~%5Chspace%7B7em%7D%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cone%7D%7D%7BV%3D%5Ccfrac%7B24%5Cpi%20%7D%7B3%7D%7D%5Cimplies%20V%3D8%5Cpi)
notice the volumes, the cone's volume is really one-third that of the cylinder, assuming "h"eight and "r"adius is the same on both.