NOT NECESSARILY would a triangle be equilateral if one of its angles is 60 degrees. To be an equilateral triangle (a triangle in which all 3 sides have the same length), all 3 angles of the triangle would have to be 60°-angles; however, the triangle could be a 30°-60°-90° right triangle in which the side opposite the 30 degree angle is one-half as long as the hypotenuse, and the length of the side opposite the 60 degree angle is √3/2 as long as the hypotenuse. Another of possibly many examples would be a triangle with angles of 60°, 40°, and 80° which has opposite sides of lengths 2, 1.4845 (rounded to 4 decimal places), and 2.2743 (rounded to 4 decimal places), respectively, the last two of which were determined by using the Law of Sines: "In any triangle ABC, having sides of length a, b, and c, the following relationships are true: a/sin A = b/sin B = c/sin C."¹
#1 7.1 years old
#2 7.8 years old
#3 87.4
#4 74
#5 7.4
Mean:
E[Y] = E[3X₁ + X₂]
E[Y] = 3 E[X₁] + E[X₂]
E[Y] = 3µ + µ
E[Y] = 4µ
Variance:
Var[Y] = Var[3X₁ + X₂]
Var[Y] = 3² Var[X₁] + 2 Covar[X₁, X₂] + 1² Var[X₂]
(the covariance is 0 since X₁ and X₂ are independent)
Var[Y] = 9 Var[X₁] + Var[X₂]
Var[Y] = 9σ² + σ²
Var[Y] = 10σ²
Answer:
If you understand how I solved a you can do B. Keep at it!
Step-by-step explanation:
I believe it would be 12.16