Answer:
(9, 3)
Step-by-step explanation:
When a point is rotated 180 degrees, you take the opposite of the coordinates.
i.e (5, 6) ---> (-5, -6)
Answer:
Ralphie's dad can eat 8 fruit bars without going over his calorie allotment.
Step-by-step explanation:
Given,
Per day calorie intake limit = less than 2126 calories
Calories are already taken = 1586 calories
Calories in each fruit bar = 66 calories
Let,
x be the number of fruit bars that Ralphie's dad can consume.
Calories in each fruit bar*Number of fruit bars + calories already taken < per day limit
Dividing both sides by 66
i)On z, define a∗b=a−b
here aϵz
+
and bϵz
+
i.e.,a and b are positive integers
Let a=2,b=5⇒2∗5=2−5=−3
But −3 is not a positive integer
i.e., −3∈
/
z
+
hence,∗ is not a binary operation.
ii)On Q,define a∗b=ab−1
Check commutative
∗ is commutative if,a∗b=b∗a
a∗b=ab+1;a∗b=ab+1=ab+1
Since a∗b=b∗aforalla,bϵQ
∗ is commutative.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(ab+1)∗c=(ab+1)c+1=abc+c+1
a∗(b∗c)=a∗(bc+1)=a(bc+1)+1=abc+a+1
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
iii)On Q,define a∗b=
2
ab
Check commutative
∗ is commutative is a∗b=b∗a
a∗b=
2
ab
b∗a=
2
ba
=
2
ab
a∗b=b∗a∀a,bϵQ
∗ is commutativve.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=
2
(
2
ab
)∗c
=
4
abc
(a∗b)∗c=a∗(b∗c)=
2
a×
2
bc
=
4
abc
Since (a∗b)∗c=a∗(b∗c)∀a,b,cϵQ
∗ is an associative binary operation.
iv)On z
+
, define if a∗b=b∗a
a∗b=2
ab
b∗a=2
ba
=2
ab
Since a∗b=b∗a∀a,b,cϵz
+
∗ is commutative.
Check associative.
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(2
ab
)
∗
c=2
2
ab
c
a∗(b∗c)=a∗(2
ab
)=2
a2
bc
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
v)On z
+
define a∗b=a
b
a∗b=a
b
,b∗a=b
a
⇒a∗b
=b∗a
∗ is not commutative.
Check associative
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(a
b
)
∗
c=(a
b
)
c
a∗(b∗c)=a∗(2
bc
)=2
a2
bc
eg:−Leta=2,b=3 and c=4
(a∗b)
∗
c=(2∗3)
∗
4=(2
3
)
∗
4=8∗4=8
4
a∗(b∗c)=2
∗
(3∗4)=2
∗
(3
4
)=2∗81=2
81
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
vi)On R−{−1}, define a∗b=
b+1
a
Check commutative
∗ is commutative if a∗b=b∗a
a∗b=
b+1
a
b∗a=
a+1
b
Since a∗b
=b∗a
∗ is not commutatie.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(
b+1
a
)
∗
c=
c
b
a
+1
=
c(b+1)
a
a∗(b∗c)=a∗(
c+1
b
)=
c+1
b
a
=
b
a(c+1)
Since (a∗b)∗c
=a∗(b∗c)
∗ is not a associative binary operation
So you can do this multiple ways, I'll do this the way that I think makes sense the l most easily.
Cos (0) = 1
Cos (pi/2)=0
Cos (pi) =-1
Cos (3pi/2)=0
Cos (2pi)=1
Now if you multiply the inside by 4, the graph oscillates more violently (goes up and down more in a shorter period).
But you can always reduce it.
Cos (0)= 1
Cos (4pi/2) = cos (2pi)=1
Cos (4pi) =Cos (2pi) =1 (Any multiple of 2pi ==1)
etc...
the pattern is that every half pi increase is now a full period as apposed to just a quarter of one. That's in theory.
Now that you know that, the identities of Cosine are another beast, but mathematically.
You have.
Cos (2×2t) = Cos^2 (2t)-Sin^2 (2t)
Sin^2 (t)=-Cos^2 (t)+1..... (all A^2+B^2=C^2)
Cos (2×2t) = Cos^2 (t)-(-Cos^2 (t)+1)
Cos (2×2t)= 2Cos^2 (2t) - 1
2Cos^2 (2t) -1= 2 (Cos^2(t)-Sin^2(t))^2 -1
(same thing as above but done twice because it's cos ^2 now)
convert sin^2
2Cos^2 (2t)-1 =2 (Cos^2 (t)+Cos^2 (t)-1)^2 -1
2 (2Cos^2(t)-1)^2 -1
2 (2Cos^2 (t)-1)(2Cos^2 (t)-1)-1
2 (4Cos^4 (t) - 2 (2Cos^2 (t))+1)-1
Distribute
8Cos^4 (t) -8Cos^2 (t) +1
Cos (4t) =8Cos^4-8Cos^2 (t)+-1
Answer:
54 inches = 1.3716 meters
Step-by-step explanation: