To solve problem 19, we must remember the order of operations. PEMDAS tells us that we should simplify numbers in parentheses first, exponents next, multiplication and division after that, and finally addition and subtraction. Using this knowledge, we can begin to simplify the problem by working out the innermost set of parentheses:
36 / [10 - (3-1)²]
36 / [10 - (2)²]
Next, we should still simplify what is inside the parentheses but continue to solve the exponents (the next letter in PEMDAS).
36/ (10-4)
After that, we should compute the subtraction that is inside the parentheses.
36/6
Finally, we can solve using division.
6
Now, we can move onto problem 20:
1/4(16d - 24)
To solve this problem, we need to use the distributive property, which allows us to distribute the coefficient of 1/4 through the parentheses by multiplying each term by 1/4.
1/4 (16d-24)
1/4(16d) - 1/4(24)
Next, we can simplify further by using multiplication.
4d - 6
Therefore, your answer to problem 19 is 6 and the answer to problem 20 is 4d -6.
Hope this helps!
Answer:
7 cents/mile
Step-by-step explanation:
You are looking for a unit rate of cents per mile.
Change the dollar amount to cents, and divide by the number of miles.
$13.08 * (100 cents)/$ = 1308 cents
(1308 cents)/(183 miles) = 7.001 cents/mile
It's dependent on the context. A book may ask you to find the f'(x) of a function and you may have to use a u sub in your problem which requires you to find the dy/dx of what you substitute. So in this case both would be used.
Answer:
28.50+x or 28.50x
Step-by-step explanation:
6*4.75=28.50
6*x=6x or x
Answer:
CD = 14 cm; DE = 21 cm
Step-by-step explanation:
The perimeter is the sum of side lengths (in centimeters), so ...
CD + DE + CF + EF = 55
CD + DE + 8 + 12 = 55 . . . . . . . substittute for CF and EF
CD + DE = 35 . . . . . . . . . . . . . . subtract 20
___
The segment DF is a diagonal of the rhombus, so bisects angle D. That angle bisector divides ΔCDE into segments that are proportional. That is, ...
CD/DE = CF/EF = 8/12 = 2/3
___
So, we have two segments whose sum is 35 (cm) and whose ratio is 2 : 3. The total of "ratio units is 2+3=5, so each must stand for a length unit of 35/5 = 7 (cm). The sides are ...
CD = 2·7 cm = 14 cm
DE = 3·7 cm = 21 cm
<em>Check</em>
CD + DE = (14 +21) cm = 35 cm . . . . . matches requirements