Answer:
-2/3
Step-by-step explanation:
The slope of a line can be represented as
where (x1, y1) and (x2, y2) are points on the line. We can substitute the points given, (-3, 5) and (6, -1), to calculate the slope:

The transformation of a function may involve any change. The correct option is D.
<h3>How does the transformation of a function happen?</h3>
The transformation of a function may involve any change.
Usually, these can be shifted horizontally (by transforming inputs) or vertically (by transforming output), stretched (multiplying outputs or inputs), etc.
If the original function is y = f(x), assuming the horizontal axis is the input axis and the vertical is for outputs, then:
Horizontal shift (also called phase shift):
- Left shift by c units, y=f(x+c) (same output, but c units earlier)
- Right shift by c units, y=f(x-c)(same output, but c units late)
Vertical shift
- Up by d units: y = f(x) + d
- Down by d units: y = f(x) - d
Stretching:
- Vertical stretch by a factor k: y = k \times f(x)
- Horizontal stretch by a factor k: y = f(\dfrac{x}{k})
Given the function f(x)=2ˣ, while the h(x)=-3(2ˣ), therefore, the function f(x) is a reflection and a translation of a function. Hence, the correct option is D.
Learn more about Transforming functions:
brainly.com/question/17006186
#SPJ1
A) 45%, (100-200)/200=0.45 which also equals 45% :)
Answer:
Step-by-step explanation:
Given that,
f(3) = 2
f'(3) = 5.
We want to estimate f(2.85)
The linear approximation of "f" at "a" is one way of writing the equation of the tangent line at "a".
At x = a, y = f(a) and the slope of the tangent line is f'(a).
So, in point slope form, the tangent line has equation
y − f(a) = f'(a)(x − a)
The linearization solves for y by adding f(a) to both sides
f(x) = f(a) + f'(a)(x − a).
Given that,
f(3) = 2,
f'(3) = 5
a = 3, we want to find f(2.85)
x = 2.85
Therefore,
f(x) = f(a) + f'(a)(x − a)
f(2.85) = 2 + 5(2.85 - 3)
f(2.85) = 2 + 5×-0.15
f(2.85) = 2 - 0.75
f(2.85) = 1.25