Answer:
Hello there!
The answer you are looking for is B.!
Step-by-step explanation:
That is the only one that makes sense.
Have a great day!
Answer:
See Explanation
Step-by-step explanation:
The question has unclear information.
So, I'll answer from scratch
Given
ABC = Right angled triangle
DB bisects ABC
Required
Prove that CBD = 45
From the question, we have that:
ABC is right angled at B
So, when DB bisects ABC, it means that DB divides ABC into two equal angles.
i.e.
![CBD = ABD](https://tex.z-dn.net/?f=CBD%20%3D%20ABD)
and
![CBD + ABD = 90](https://tex.z-dn.net/?f=CBD%20%2B%20ABD%20%3D%2090)
Substitute CBD for ABD in ![CBD + ABD = 90](https://tex.z-dn.net/?f=CBD%20%2B%20ABD%20%3D%2090)
![CBD + CBD = 90](https://tex.z-dn.net/?f=CBD%20%2B%20CBD%20%3D%2090)
![2CBD = 90](https://tex.z-dn.net/?f=2CBD%20%3D%2090)
Divide both sides by 2
![\frac{2CBD}{2} = \frac{90}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2CBD%7D%7B2%7D%20%3D%20%5Cfrac%7B90%7D%7B2%7D)
![CBD = \frac{90}{2}](https://tex.z-dn.net/?f=CBD%20%3D%20%5Cfrac%7B90%7D%7B2%7D)
![CBD = 45](https://tex.z-dn.net/?f=CBD%20%3D%2045)
Hence, it is proved that ![CBD = 45](https://tex.z-dn.net/?f=CBD%20%3D%2045)
<em>Follow the above explanation and use it to answer your question properly</em>
![\qquad\qquad\huge\underline{{\sf Answer}}♨](https://tex.z-dn.net/?f=%5Cqquad%5Cqquad%5Chuge%5Cunderline%7B%7B%5Csf%20Answer%7D%7D%E2%99%A8)
Let's solve ~
![\qquad \sf \dashrightarrow \:40 + x + 25 = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A40%20%2B%20x%20%2B%2025%20%3D%20180)
![\qquad \sf \dashrightarrow \:x + 65 = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3Ax%20%2B%2065%20%3D%20180)
![\qquad \sf \dashrightarrow \:x = 180 - 65](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3Ax%20%3D%20180%20-%2065)
![\qquad \sf \dashrightarrow \:x = 115](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3Ax%20%3D%20115)
I hope you understood the procedure, please let me know if you have any doubts