Answer:
1. -4
Step-by-step explanation:
<em>1</em><em>/</em><em>2</em><em> </em><em>[</em><em> </em><em>(</em><em>3</em><em>/</em><em>2</em><em>)</em><em>y</em><em> </em><em>+</em><em> </em><em>1</em><em>/</em><em>3</em><em>]</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>/</em><em>2</em><em> </em><em>[</em><em>y</em><em>-</em><em>5</em><em>/</em><em>2</em><em>]</em>
<em>(</em><em>3</em><em>/</em><em>2</em><em>)</em><em>y</em><em> </em><em>+</em><em> </em><em>1</em><em>/</em><em>3</em><em> </em><em>=</em><em> </em><em>-</em><em>(</em><em>1</em><em>/</em><em>2</em><em>)</em><em>y</em><em> </em><em>+</em><em> </em><em>3</em>
<em>(</em><em>3</em><em>/</em><em>2</em><em> </em><em>+</em><em> </em><em>1</em><em>/</em><em>2</em><em>)</em><em>y</em><em> </em><em>=</em><em> </em><em>3</em><em> </em><em>-</em><em> </em><em>1</em><em>/</em><em>3</em>
<em>2y</em><em> </em><em>=</em><em> </em><em>8</em><em>/</em><em>3</em>
<em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>/</em><em>3</em>
<u><em>y</em><em> </em><em>=</em><em> </em><em>1.33</em></u>
<em>#</em><em>$</em><em>#</em><em>HOPE</em><em> </em><em>YOU</em><em> </em><em>UNDERSTAND</em><em> </em><em>#</em><em>$</em><em>#</em>
<em>#</em><em>$</em><em>¥</em><em>THANK</em><em> </em><em>YOU</em><em> </em><em> ¥</em><em>$</em><em>#</em>
<em>❤</em><em> </em><em>☺</em><em> </em><em>☺</em><em> </em><em>☺</em><em> </em><em /><em> </em><em>☺</em><em> </em><em>☺</em><em> </em><em>☺</em><em> </em><em>❤</em><em> </em>
The next terms in the sequence will be multiplied by c, but the common ratio is still the same
example :
S = [1(3)^4 - 1]/ [3-1] = 80/2 - 40
Hope this helps
Answer:
6(6x + 4y), 12(3x + 2y), 4(9x + 6y)
Step-by-step explanation:
The expressions are equivalent to 36x + 24 y
Hope this helps! :)
<h2>
Explanation:</h2><h2>
</h2>
An irrational number is a number that can't be written as a simple fraction while a rational number is a number that can be written as the ratio of two integers, that is, as a simple fraction. So in this case we have the number 2 which is ration, and we can multiply it by an irrational number such that the product is an irrational number. So any irrational number will meet our requirement because the product of any rational number and an irrational number will lead to an irrational number. For instance: