Answer:
x ≈ 1.4
Step-by-step explanation:
Using the sine ratio in the right triangle
sin50° =
=
=
( multiply both sides by 1.8 )
1.8 × sin50° = x , then
x ≈ 1.4 ( to the nearest tenth )
answer: you're missing the problem
Answer:
Q13. y = sin(2x – π/2); y = - 2cos2x
Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1
Step-by-step explanation:
Question 13
(A) Sine function
y = a sin[b(x - h)] + k
y = a sin(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Phase shift = π/2.
2h =π/2
h = π/4
The equation is
y = sin[2(x – π/4)} or
y = sin(2x – π/2)
B. Cosine function
y = a cos[b(x - h)] + k
y = a cos(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Reflected across x-axis, y ⟶ -y
The equation is y = - 2cos2x
Question 14
(A) Sine function
(1) Amp = 2; a = 2
(2) Shifted down 1; k = -1
(3) Per = π; b = 2
(4) Phase shift = 0; h = 0
The equation is y = 2sin2x -1
(B) Cosine function
a = 2, b = -1; b = 2
Phase shift = π/2; h = π/4
The equation is
y = -2cos[2(x – π/4)] – 1 or
y = -2cos(2x – π/2) - 1
A&d i think.. but basically the equation needs to be modeled where the answer will be a 14° difference
Get like terms together. you might have to move across the equals sign
3x-x=-6+82
2x=76
x=38