What you want to do here is take this information and plug it into point-slope form. any time you're given a point and a slope, you generally want to plug it into this equation: y - y1 = m(x - x1).
in this equation, m is your slope and (x1, y1) is a given point. plug in your info--slope of -3 and (-5, 2).
y - 2 = -3(x + 5)
that is the equation of your line. however, if you want to graph it, this doesn't really make much sense to you. convert it to slope-intercept form, y = mx + b, by solving for y.
y - 2 = -3(x + 5) ... distribute -3
y - 2 = -3x - 15 ... add 2
y = -3x - 13 is your equation.
to graph this, and any other y = mx + b equation, you want to start with your y-intercept if it's present. your y intercept here is -13, which means the line you wasn't to graph crosses the y-axis at y = -13, or (0, -13). put a point there.
after you've plotted that point, you use your slope to graph more. remember that your slope is "rise over run"--you rise up/go down however many units, you run left/right however many units. if your slope is -3, you want to go down 3 units, then go to the right 1 unit. remember that whole numbers have a 1 beneath them as a fraction. -3/1 is your rise over 1.
1 pound is 16 ounces
32 ounces is 32 ÷ 16 = 2 pounds
1 pound of Botcoil ⇒ 1.5
2 pounds = 1.5 × 2 = 3
The answer is 2 I believe
<em>Answer:</em>
<em>C = 12.88</em>
<em>Step-by-step explanation:</em>
<em>If the radius of the circle is 4 cm, then the diameter of the circle is 4 cm x 2, or 8 cm. If you know the circumference of the circle, divide it by </em><em>π</em><em> to get the diameter.</em>
<em>C = π d = π · 4.1 = </em><em>12.88</em><em>053cm </em>
Glad to help ya!!
Well, you could assign a letter to each piece of luggage like so...
A, B, C, D, E, F, G
What you could then do is set it against a table (a configuration table to be precise) with the same letters, and repeat the process again. If the order of these pieces of luggage also has to be taken into account, you'll end up with more configurations.
My answer and workings are below...
35 arrangements without order taken into consideration, because there are 35 ways in which to select 3 objects from the 7 objects.
210 arrangements (35 x 6) when order is taken into consideration.
*There are 6 ways to configure 3 letters.
Alternative way to solve the problem...
Produce Pascal's triangle. If you want to know how many ways in which you can choose 3 objects from 7, select (7 3) in Pascal's triangle which is equal to 35. Now, there are 6 ways in which to configure 3 objects if you are concerned about order.