A parabola, a graph of a quadratic function, cannot have a maximum vertex and a minimum vertex at the same time because of the shape of the graph. A parabola is a u-shaped graph. The vertex of the parabola is the point where the u changes direction; if it was increasing, it starts to decrease, and if it was decreasing, it starts to increase. Since a parabola only changes direction once, there will either be a minimum or a maximum, not both.
Answer:
k = 5
Step-by-step explanation:
I will assume that your polynomial is
x^2 - 3x^2 + kx + 14
If x - a is a factor of this polynomial, then a is a root.
Use synthetic division to divide (x - 2) into x^2 - 3x^2 + kx + 14:
2 / 1 -3 k 14
2 -2 2k - 4
-------------------------------------
1 -1 (k - 2) 2k - 10
If 2 is a root (if x - 2 is a factor), then the remainder must be zero.
Setting 2k - 10 = to zero, we get k = 5.
The value of k is 5 and the polynomial is x^2 - 3x^2 + 5x + 14
Answer:
Step-by-step explanation:
(-4 - 4)/(6 + 2)= -8/8= -1
y - 4 = -1(x + 2)
y - 4 = -x - 2
y = -x + 2
Let us solve this system of equations by using the elimination method. Adding the 2 equations, we get
9x + 5y - 9x + 4y = -33 + 6
9y = -27
y = -3
Substituting this value of y in the first equation, we get
-9x + 4(-3) = 6
-9x - 12 = 6
9x + 12 = -6
9x = -18
x = -2
Therefore, x = -2, and y = -3. Hope this helps! If you have any questions, feel free to ask.
<h3>
Answer: 16 square units</h3>
Let x be the height of the parallelogram. Right now it's unknown, but we can solve for it using the pythagorean theorem. Focus on the right triangle. It has legs a = 3 and b = x, with hypotenuse c = 5
a^2 + b^2 = c^2
3^2 + x^2 = 5^2
9 + x^2 = 25
x^2 = 25-9
x^2 = 16
x = sqrt(16)
x = 4
This is a 3-4-5 right triangle.
The height of the parallelogram is 4 units.
We have enough info to find the area of the parallelogram
Area of parallelogram = base*height
Area of parallelogram = 4*4
Area of parallelogram = 16 square units
Coincidentally, the base and height are the same, which isn't always going to be the case. The base is visually shown as the '4' in the diagram. The height is the dashed line, which also happens to be 4 units long.