Answer:
10.28 mol
Explanation:
S + 2O = SO2
(atm x L) ÷ (0.0821 x K)
(3.45 x 45.6) ÷ (0.0821 x 373)
=5.13726
Then round it to significant figures
=5.14
5.14 mol SO2 x (2 mol O ÷ 1 mol SO2)
=10.28 mol O
Arrangement of atoms or group of atoms in a three dimensional ordered pattern in a crystal is said to be a crystalline lattice. They are arranged in a specific pattern with high symmetry. The heating of the crystal at high temperature will result in the increase of vibrational kinetic energy of the atoms in the crystal and this will result in the breaking of lattice apart and due to the breaking of lattice apart the ions will flow freely.
Thus, the heating of a solid at high temperature will lead to the lattice breaks apart and ions will flow freely.
Answer: 2 Na (s) + Cl(g) -> 2 NaCl (s)
Explanation:
Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Answer
I think it might be B
Explanation