1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
3 years ago
12

Phosphoric acid is a triprotic acid with the following pKa values:pKa1=2.148, pKa2=7.198, pKa3=12.375You wish to prepare 1.000 L

of a 0.0500 M phosphate buffer at pH 7.540. To do this, you choose to mix the two salt forms involved in the second ionization, NaH2PO4 and Na2HPO4, in a 1.000 L volumetric flask and add water to the mark. What mass of each salt will you add to the mixture?Mass NaH2PO4Mass Na2HPO4What other combination of phosphoric acid and/or its salts could be mixed to prepare this buffer? (Check all that apply).H3PO4 and NaH2PO4H3PO4 and Na2HPO4H3PO4 and Na3HPO4NaH2PO4 and NA3PO4Na2HPO4 and NA3PO4PLEASE SOLVE AND EXPLAIN
Chemistry
1 answer:
laila [671]3 years ago
8 0

Answer:

NaH₂PO₄ =  1.876 g

Na₂HPO₄ =  4.879 g

Combinations: H₃PO₄ and Na₂HPO₄; H₃PO₄ and Na₃HPO₄

Explanation:

To have a buffer at 7.540, the acid must be in it second ionization, because the buffer capacity is pKa ± 1. So, we must use pKa2 = 7.198

The relation bewteen the acid and its conjugated base (ion), is given by the Henderson–Hasselbalch equation:

pH = pKa + log[A⁻]/[HA], where [A⁻] is the concentration of the conjugated base, and [HA] the concentration of the acid. Then:

7.540 = 7.198 + log[A⁻]/[HA]

log[A⁻]/[HA] = 0.342

[A⁻]/[HA] = 10^{0.342}

[A⁻]/[HA] = 2.198

[A⁻] = 2.198*[HA]

The concentration of the acid and it's conjugated base must be equal to the concentration of the buffer 0.0500 M, so:

[A⁻] + [HA] = 0.0500

2.198*[HA] + [HA] = 0.0500

3.198*[HA] = 0.0500

[HA] = 0.01563 M

[A⁻] = 0.0500 - 0.01563

[A⁻] = 0.03436 M

The mix reaction is

NaH₂PO₄ + Na₂HPO₄ → HPO₄⁻² + 3Na + H₂PO₄⁻

The second ionization is:

H₂PO₄⁻ ⇄ HPO₄⁻² + H⁺

So, H₂PO₄⁻ is the acid form, and its concentration is the same as NaH₂PO₄, and HPO₄⁻² is the conjugated base, and its concentration is the same as Na₂HPO₄ (stoichiometry is 1:1 for both).

So, the number of moles of these salts are:

NaH₂PO₄ = 0.01563 M * 1.000 L = 0.01563 mol

Na₂HPO₄ = 0.03436 M* 1.000 L = 0.03436 mol

The molar masses are, Na: 23 g/mol, H: 1 g/mol, P: 31 g/mol, and O = 16 g/mol, so:

NaH₂PO₄ = 23 + 2*1 + 31 + 4*16 = 120 g/mol

Na₂HPO₄ = 2*23 + 1 + 31 + 4*16 = 142 g/mol

The mass is the number of moles multiplied by the molar mass, so:

NaH₂PO₄ = 0.01563 mol * 120 g/mol = 1.876 g

Na₂HPO₄ = 0.03436 mol * 142 g/mol = 4.879 g

To prepare this buffer, it's necessary to have in solution the species H₂PO₄⁻ and HPO₄⁻², so it can be prepared for mixing the combination of:

H₃PO₄ and Na₂HPO₄ (the acid is triprotic so, it will form the H₂PO₄⁻ , and the salt Na₂HPO₄ will dissociate in Na⁺ and HPO₄²⁻);

H₃PO₄ and Na₃HPO₄ (same reason).

The other combinations will not form the species required.

You might be interested in
Why might metallic bonding be weak compared to ionic and covalent bonding?
polet [3.4K]
<span>Because in covalent and ionic bonds have more than one type of atom. But metallic bond only has one.</span>
8 0
3 years ago
Read 2 more answers
A 73.6 g sample of aluminum is heated to 95.0°C and dropped into 100.0 g of water at 20.0°C. If the resulting temperature of the
Softa [21]

Answer:

The specific heat of aluminium is 0.875 J/g°C

Explanation:

Step 1: Data given

The mass of the aluminium sample = 73.6 grams

Initial temperature of the sample = 95.0 °C

Mass of water = 100.0 grams

Initial temperature of water = 20.0 °C

Final temperature of water and aluminium = 30.0 °C

The specific heat of water = 4.184 J/g°C

Step 2: Calculate the specific heat of aluminium

Q gained = Q lost

Qwater = -Qaluminium

Q =  m*c*ΔT

m(aluminium) * c(aluminium) * ΔT(aluminium) = - m(water) * c(water) * ΔT(aluminium)

⇒ mass of aluminium = 73.6 grams

⇒ c(aluminium) = TO BE DETERMINED

⇒ ΔT(aluminium) = The change of temperature = T2 - T1 = 30 .0 °C - 95.0 °C = -65.0°C

⇒ mass of water = 100.0 grams

⇒ c(water ) = The specific heat of water = 4.184 J/g°C

⇒ ΔT(water) = The change of temperature of water = T2 - T1 = 30.0 - 20.0 = 10.0 °C

73.6g * c(aluminium) * -65.0 °C = 100.0g * 4.184 J/g°C * 10.0°C

-4784 * c(aluminium) = -4184

c(aluminium) = 0.875 J /g°C

The specific heat of aluminium is 0.875 J/g°C

7 0
3 years ago
Which sentence from the article BEST describes HOW fireworks produce colors in the sky?
aleksley [76]
The answer is Abecaue it is the most specific on how
7 0
3 years ago
write equations to show the chemical processes which occur when the first ionization and the second ionization energies of lithi
diamong [38]

Answer:

First ionization of lithium:

\text{Li}\;(g)\to \text{Li}^{+} \; (g) + \text{e}^{-}.

Second ionization of lithium:

\text{Li}^{+}\;(g) \to\text{Li}^{2+} \;(g) + \text{e}^{-}.

Explanation:

The ionization energy of an element is the energy required to remove the outermost electron from an atom or ion of the element in gaseous state. (Refer to your textbook for a more precise definition.) Some features of the equation:

  • Start with a gaseous atom (for the first ionization energy only) or a gaseous ion. Write the gaseous state symbol (g) next to any atom or ion in the equation.
  • The product shall contain one gaseous ion and one electron. The charge on the ion shall be the same as the order of the ionization energy. For the second ionization energy, the ion shall carry a charge of +2.
  • Charge shall balance on the two sides of the equation.

First Ionization Energy of Li:

  • The products shall contain a gaseous ion with charge +1 \text{Li}^{+}\;(g) as well as an electron \text{e}^{-}.
  • Charge shall balance on the two sides. There's no net charge on the product side. Neither shall there be a charge on the reactant side. The only reactant shall be a lithium atom which is both gaseous and neutral: \text{Li}\;(g).
  • Hence the equation: \text{Li}\;(g) \to \text{Li}^{+}\;(g) + \text{e}^{-}.

Second Ionization Energy of Li:

  • The product shall contain a gaseous ion with charge +2: \text{Li}^{2+}\;(g) as well as an electron \text{e}^{-}.
  • Charge shall balance on the two sides. What's the net charge on the product side? That shall also be the charge on the reactant side. What will be the reactant?
  • The equation for this process is \text{Li}^{+} \; (g) \to \text{Li}^{2+}\;(g) + \text{e}^{-}.
5 0
3 years ago
A gas cylinder contains exactly 15 moles of oxygen gas (O2). How many molecules of oxygen are in the cylinder? 4.01 × 1022 molec
Semmy [17]
The answer is 9.03 × 10²⁴<span> molecules.

</span><span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance.
Make the proportion.
</span><span>6.02 × 10²³ molecules per 1 mol
</span>x per 15 mol

6.02 × 10²³ molecules : 1 mol = x : 15 mol
x = 6.02 × 10²³ molecules * 15 mol * 1 mol
x = 90.3 × 10²³ molecules
x = 9.03 × 10 × 10²³ molecules
x = 9.03 × 10²³⁺¹ molecules
x = 9.03 × 10²⁴ molecules
4 0
3 years ago
Read 2 more answers
Other questions:
  • Sierra has a special kind of liquid rubber. She knows that ultraviolet light is absorbed by the rubber, X-ray light is transmitt
    14·1 answer
  • One mole of N2 gas at STP will occupy what volume?
    10·1 answer
  • What type of gloves protects your hands from heat and flames?
    5·2 answers
  • At what temperature does gas stay
    6·1 answer
  • (HELP FAST )What occurs when a pure liquid substance is cooled?
    6·2 answers
  • Compare the following in the three states of matter
    9·1 answer
  • Please help me fast ​
    11·1 answer
  • I'm confused on whether it'd be biosphere or atmosphere going into geosphere
    6·1 answer
  • How can Cold air be made to rise
    11·1 answer
  • The temperature of a sample of water increases from 20°C to 46.6°C as it absorbs 23,639.6 J of heat. What is the mass of the sam
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!