Answer:
a. Plan B; $4
b. 160 mins; Plan B
Step-by-step explanation:
a. Cost of Plan A for 80 minutes:
Find 80 on the x axis, and trave it up to to intercept the blue line (for Plan A). Check the y axis to see the value of y at this point. Thus:
f(80) = 8
This means Plan A will cost $8 for Rafael to 80 mins of long distance call per month.
Also, find the cost per month for 80 mins for Plan B. Use the same procedure as used in finding cost for plan A.
Plan B will cost $12.
Therefore, Plan B cost more.
Plan B cost $4 more than Plan A ($12 - $8 = $4)
b. Number of minutes that the two will cost the same is the number of minutes at the point where the two lines intercept = 160 minutes.
At 160 minutes, they both cost $16
The plan that will cost less if the time spent exceeds 160 minutes is Plan B.
Answer:
The period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Step-by-step explanation:
The answer is, y = -1/3 - 3
Answer:
Q2: slope = -½
Q3: slope = 1
Step-by-step explanation:
If the equation of the line is in the form y = mx+b, then m is the slope of the line and b is the y-intercept (the point where the line crosses the x-axis).
y = -½x, so the slope of the line is -½
y = x+15, so the slope of the line is 1
Step-by-step explanation:
