We know that
If the scalar product of two vectors<span> is zero, both vectors are </span><span>orthogonal
</span><span>A. (-2,5)
</span>(-2,5)*(1,5)-------> -2*1+5*5=23-----------> <span>are not orthogonal
</span><span>B. (10,-2)
</span>(10,-2)*(1,5)-------> 10*1-2*5=0-----------> are orthogonal
<span>C. (-1,-5)
</span>(-1,-5)*(1,5)-------> -1*1-5*5=-26-----------> are not orthogonal
<span>D. (-5,1)
</span>(-5,1)*(1,5)-------> -5*1+1*5=0-----------> are orthogonal
the answer is
B. (10,-2) and D. (-5,1) are orthogonal to (1,5)
Answer:
15
Step-by-step explanation:
3*6 - 6/2
18 - 3
15
-g(-2) is 10
<u>Step-by-step explanation:</u>
Step 1:
Given g(x) = 3x - 4. Find g(-2).
⇒ g(-2) = 3 × -2 - 4 = -6 - 4 = -10
Step 2:
Find -g(-2)
⇒ -g(-2) = -(-10) = 10