$3.50
702/18= 39 (so you have 39 boxes of cookies)
$136.50/39= $3.50 (so each box cost 3.5)
3.5 x 39= 136.5
Yes the relation is a function
Answer:
b
Step-by-step explanation:
:)
we know the segment QP is an angle bisector, namely it divides ∡SQR into two equal angles, thus ∡1 = ∡2, and ∡SQR = ∡1 + ∡2.
![\bf \begin{cases} \measuredangle SQR = \measuredangle 1 + \measuredangle 2\\\\ \measuredangle 2 = \measuredangle 1 = 5x-7 \end{cases}\qquad \qquad \stackrel{\measuredangle SQR}{7x+13} = (\stackrel{\measuredangle 1}{5x-7})+(\stackrel{\measuredangle 2}{5x-7}) \\\\\\ 7x+13 = 10x-14\implies 13=3x-14\implies 27=3x \\\\\\ \cfrac{27}{3}=x\implies 9=x \\\\[-0.35em] ~\dotfill\\\\ \measuredangle SQR = 7(9)+13\implies \measuredangle SQR = 76](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20%5Cmeasuredangle%20SQR%20%3D%20%5Cmeasuredangle%201%20%2B%20%5Cmeasuredangle%202%5C%5C%5C%5C%20%5Cmeasuredangle%202%20%3D%20%5Cmeasuredangle%201%20%3D%205x-7%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cmeasuredangle%20SQR%7D%7B7x%2B13%7D%20%3D%20%28%5Cstackrel%7B%5Cmeasuredangle%201%7D%7B5x-7%7D%29%2B%28%5Cstackrel%7B%5Cmeasuredangle%202%7D%7B5x-7%7D%29%20%5C%5C%5C%5C%5C%5C%207x%2B13%20%3D%2010x-14%5Cimplies%2013%3D3x-14%5Cimplies%2027%3D3x%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B27%7D%7B3%7D%3Dx%5Cimplies%209%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%20SQR%20%3D%207%289%29%2B13%5Cimplies%20%5Cmeasuredangle%20SQR%20%3D%2076)
I'm assuming you meant to write a^4 = 625.
If that is the case, then note how 625 = 25^2, and how a^4 is the same as (a^2)^2
So we go from this
a^4 = 625
to this
(a^2)^2 = 25^2
Apply the square root to both sides and you'll end up with: a^2 = 25
From here, apply the square root again to end up with the final answer: a = 5 or a = -5
As a check:
a^4 = (-5)^4 = (-5)*(-5)*(-5)*(-5) = 25*25 = 625
a^4 = (5)^4 = (5)*(5)*(5)*(5) = 25*25 = 625
Both values of 'a' work out