Answer:
Therefore the lengths of the opposite side pairs.
C) 18, 9
Step-by-step explanation:
Given:
Quadrilateral ABCD is a parallelogram
AB = 6x
DC = x + 15
AD = 9
BC = 3y
TO Find:
AB = ?
BC = ?
Solution:
Quadrilateral ABCD is a parallelogram ..........Given
∴ Both pairs of opposite sides of a Parallelogram are congruent.
∴ AB = DC and AD = BC
substituting the values we get
![6x=x+15\\6x-x=15\\5x=15\\x=\dfrac{15}{5}\\ x=3\\and\\9=3y\\y=\dfrac{9}{3}\\ y=3](https://tex.z-dn.net/?f=6x%3Dx%2B15%5C%5C6x-x%3D15%5C%5C5x%3D15%5C%5Cx%3D%5Cdfrac%7B15%7D%7B5%7D%5C%5C%20x%3D3%5C%5Cand%5C%5C9%3D3y%5C%5Cy%3D%5Cdfrac%7B9%7D%7B3%7D%5C%5C%20y%3D3)
substituting the x' and 'y' values we get
![AB= 6\times 3=18\\and\\BC=3\times 3=9](https://tex.z-dn.net/?f=AB%3D%206%5Ctimes%203%3D18%5C%5Cand%5C%5CBC%3D3%5Ctimes%203%3D9)
Therefore the lengths of the opposite side pairs.
C) 18, 9