1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
2 years ago
9

Let an = –3an-1 + 10an-2 with initial conditions a1 = 29 and a2 = –47. a) Write the first 5 terms of the recurrence relation. b)

Solve this recurrence relation. Show your reasoning. c) Using the explicit formula you found in part b, evaluate a5. You must show that you are using the equation from part b.
Mathematics
1 answer:
zlopas [31]2 years ago
6 0

We can express the recurrence,

\begin{cases}a_1=29\\a_2=-47\\a_n=-3a_{n-1}+10a_{n-2}7\text{for }n\ge3\end{cases}

in matrix form as

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}

By substitution,

\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}\begin{bmatrix}a_{n-2}\\a_{n-3}\end{bmatrix}\implies\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}^2\begin{bmatrix}a_{n-2}\\a_{n-3}\end{bmatrix}

and continuing in this way we would find that

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}\begin{bmatrix}a_2\\a_1\end{bmatrix}

Diagonalizing the coefficient matrix gives us

\begin{bmatrix}-3&10\\1&0\end{bmatrix}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}-5&0\\0&2\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

which makes taking the (n-2)-th power trivial:

\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}-5&0\\0&2\end{bmatrix}^{n-2}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}(-5)^{n-2}&0\\0&2^{n-2}\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

So we have

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}(-5)^{n-2}&0\\0&2^{n-2}\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}\begin{bmatrix}a_2\\a_1\end{bmatrix}

and in particular,

a_n=\dfrac{29\left(2(-5)^{n-1}+5\cdot2^{n-1}\right)-47\left(-(-5)^{n-1}+2^{n-1}\right)}7

a_n=\dfrac{105(-5)^{n-1}+98\cdot2^{n-1}}7

a_n=15(-5)^{n-1}+14\cdot2^{n-1}

\boxed{a_n=-3(-5)^n+7\cdot2^n}

You might be interested in
Is 10/9 closer to 1,1/2,0
balandron [24]
\dfrac{10}{9}=\dfrac{9+1}{9}=\dfrac{9}{9}+\dfrac{1}{9}=1\dfrac{1}{9} \ \textgreater \  1\\\\therefore\\\\\dfrac{10}{9}\ is\ closter\ to\ 1
5 0
3 years ago
Read 2 more answers
25% of my salary each month is paid out as taxes. Of the remaining, two-thirds is spent on expenses and the rest is saved. If my
soldi70 [24.7K]

Answer:

9,000

Step-by-step explanation

You pay one 4th of your money on taxes. 36000/4 is 9,000.

8 0
2 years ago
What is the remainder when the polynomial 6x2+11x−3 is divided by 2x−1?
o-na [289]

Answer: 4

There are three different ways to find the remainder.  Since I don't know which lesson you are working on, I will show you all three methods.

<u>Long Division:</u>

           <u>3x  +  7      </u>

2x - 1 ) 6x² + 11x - 3

       -  <u>(6x²  -  3x)</u>   ↓

                    14x  - 3

                -   (<u>14x  - 7)</u>  

                              4    

<u>Synthetic Division:</u>

2x - 1 = 0   ⇒   x = \frac{1}{2}


\frac{1}{2}   | 6      11     -3

    <u>| ↓       3     7</u>

      6      14    4

<u>Remainder Theorem:</u>

2x - 1 = 0   ⇒   x = \frac{1}{2}

f(x) = 6x² + 11x - 3

f(\frac{1}{2}) = 6(\frac{1}{2})² + 11(\frac{1}{2}) - 3

      = 6(\frac{1}{4}) + \frac{11}{2} - 3

      = \frac{3}{2} + \frac{11}{2} - \frac{6}{2}

      = \frac{8}{2}

      = 4

                                     

3 0
3 years ago
Read 2 more answers
How to I write 1 2/3 as an improper fraction help ASAP
vagabundo [1.1K]
You would write 5/3 for it to be an improper fraction
8 0
3 years ago
Read 2 more answers
Calvin had 30 minutes in time-out. For the first 23 1/3 minutes, Calvin counted spots on the ceiling. For the rest of the time,
scoundrel [369]

Answer: \frac{20}{3}\ minutes or 6 \frac{2}{3}\ minutes

Step-by-step explanation:

For this exercise you can convert the mixed number to an improper fraction:

1. Multiply the whole number part by the denominator of the fraction.

2. Add the product obtained and the numerator of the fraction (This will be the new numerator).

3. The denominator does not change.

Then:

23\frac{1}{3}= \frac{(23*3)+1}{3}= \frac{70}{3}\ minutes

You know that he had 30 minutes in time-out, he counted spots on the ceiling for \frac{70}{3} minutes and the rest of the time he made faces at his stuffed tiger.

Then, in order to calculate the time Calvin spent making faces at his stuffed tiger, you need to subract 30 minutes and \frac{70}{3} minutes:

30\ min-\frac{70}{3}=(\frac{3(30)-70}{3})=\frac{20}{3}\ minutes or 6 \frac{2}{3}\ minutes

7 0
3 years ago
Read 2 more answers
Other questions:
  • 10 - 3(3x - 40) = -9x A)x = -9 B)no solution C)x = 10 D)all real numbers
    12·1 answer
  • PLEASE HELP ASAP!! CORRECT ANSWER ONLY PLEASE!!<br><br> Simplify.<br><br> −6i√-44
    15·1 answer
  • Hugo is making blue paint with red paint to creat purple paint. The ratio of blue to red is 3 to 2. How many pints of blue paint
    13·1 answer
  • Help me please . What is the answer
    12·1 answer
  • Pleasee help!! im confused
    10·1 answer
  • Which point on the number line shown would represent the fraction 3/20?
    15·1 answer
  • Please give the right answer
    15·1 answer
  • Find the input (x) of the function y=5x-3 if the output (y) is 32
    6·2 answers
  • HELP ASAP FOR BRAINLIEST!!
    15·1 answer
  • What is the radius of the circle?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!