x%5E%7B2%7D%20%2B2x%2B1%7D%20%7D%7Bx%2B1%7D" id="TexFormula1" title="\lim_{x\to \infty} \frac{\sqrt{9x^{2} +x+1} -\sqrt{4x^{2} +2x+1} }{x+1}" alt="\lim_{x\to \infty} \frac{\sqrt{9x^{2} +x+1} -\sqrt{4x^{2} +2x+1} }{x+1}" align="absmiddle" class="latex-formula">
1 answer:
Answer:
Step-by-step explanation:
Considering the expression

Steps to solve



![\lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5B%5Cfrac%7Bf%5Cleft%28x%5Cright%29%7D%7Bg%5Cleft%28x%5Cright%29%7D%5Cright%5D%3D%5Cfrac%7B%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%7D%7B%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%7D%2C%5C%3A%5Cquad%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5Cne%200)

![\frac{\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}\right)}{\lim _{x\to \infty \:}\left(1+\frac{1}{x}\right)}.....[1]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D-%5Csqrt%7B4%2B%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29%7D%7B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%281%2B%5Cfrac%7B1%7D%7Bx%7D%5Cright%29%7D.....%5B1%5D)
As

Solving
![\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}\right)....[A]](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D-%5Csqrt%7B4%2B%5Cfrac%7B2%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29....%5BA%5D)
![\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29)


Also

Solving
![\lim _{x\to \infty \:}\left(\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}\right)......[B]](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Csqrt%7B9%2B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%5Cright%29......%5BB%5D)
![\lim _{x\to a}\left[f\left(x\right)\right]^b=\left[\lim _{x\to a}f\left(x\right)\right]^b](https://tex.z-dn.net/?f=%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cright%5D%5Eb%3D%5Cleft%5B%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cright%5D%5Eb)





So, Equation [B] becomes
⇒ 
⇒ 
Similarly, we can find

So, Equation [A] becomes
⇒ 
⇒ 1
Also

Thus, equation becomes

Therefore,
Keywords: limit
Learn more about limit form limit brainly.com/question/1444049
#learnwithBrainly
You might be interested in
What is that cause its not math
X | y
----------
-3 | 3.5
-2 | 3.25
-1 | 2.5
1 | 5.5
2 | 4.75
3 | 4.5
Answer:

Step-by-step explanation:
we have

we know that


substitute

therefore
The 2014 population of West Palm Beach in scientific notation is equal to

<span>3x + 8x + 4x = 6x + 63
15x = 6x + 63
9x = 63
x = 7
so
5x+ 23 =5(7) + 23 = 35+23 = 58</span>