Answer:
-9/8
Step-by-step explanation:
3x + 9 + 4x + x
Collect like terms
3x + 4x + x = -9
8x = -9
Divide both sides by 8
8x/8 = -9/8
x = -9/8
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer:
The notation from analyzing the Karnaugh map is:
F(X,Y,Z) = X'Y'Z + X'Z'Y + Y'Z'X
With logical functions would be:
F(X,Y,Z) = (NOT(X AND Y) AND Z) OR ((NOT Z) AND (X XOR Y))
Step-by-step explanation:
You can reduce the logical function with a Karnaugh map, like the attached, notice the gray coding notation, to assure only one variable change at each cell.
Answer:
1536ftsquared
Step-by-step explanation:
Um I think this is the answer, and I’m not sure how to explain it to u. Hope this helps!
The initial amount is $650. The $400 is deposited in Account 1 with 3.5% annual simple interest. The $250 is deposited in Account 2 with 3.5% interest compounded monthly.
n = 2 years
Account 1: Simple Interest
F = P (1+rn)
= 400 (1 +(0.035*2))
= $428
Account 2: Compound Interest
F = P (1+i)^n
= 250 ( 1+0.035)^2
F = 267.81
Total money after 2 years = $428 + $267.81
T = $695.81