Answer:
a) sample mean = 2.63 inches
sample standard deviation = ![\frac{standard \hspace{0.15cm} deviation}{\sqrt{n} } = \frac{0.03}{\sqrt{9} } = \frac{0.03}{3} = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7Bstandard%20%5Chspace%7B0.15cm%7D%20deviation%7D%7B%5Csqrt%7Bn%7D%20%7D%20%3D%20%5Cfrac%7B0.03%7D%7B%5Csqrt%7B9%7D%20%7D%20%3D%20%5Cfrac%7B0.03%7D%7B3%7D%20%3D%200.01)
b) P(X < 2.61) = 0.0228
c.) P(2.62 < X < 2.64) = 0.6827
d.) Therefore 0.06 = P(2.6292 < X < 2.6307)
Step-by-step explanation:
i) the diameter of a brand of tennis balls is approximately normally distributed.
ii) mean = 2.63 inches
iii) standard deviation = 0.03 inches
iv) random sample of 9 tennis balls
v) sample mean = 2.63 inches
vi) sample standard deviation = ![\frac{standard \hspace{0.15cm} deviation}{\sqrt{n} } = \frac{0.03}{\sqrt{9} } = \frac{0.03}{3} = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7Bstandard%20%5Chspace%7B0.15cm%7D%20deviation%7D%7B%5Csqrt%7Bn%7D%20%7D%20%3D%20%5Cfrac%7B0.03%7D%7B%5Csqrt%7B9%7D%20%7D%20%3D%20%5Cfrac%7B0.03%7D%7B3%7D%20%3D%200.01)
vii) the sample mean is less than 2.61 inches = P(X < 2.61) = 0.0228
viii)the probability that the sample mean is between 2.62 and 2.64 inches
P(2.62 < X < 2.64) = 0.6827
ix) The probability is 6-% that the sample mean will be between what two values symmetrically distributed around the population measure
Therefore 0.06 = P(2.6292 < X < 2.6307)