Checking the <span>discontinuity at point -4
from the left f(-4) = 4
from the right f(-4) = (-4+2)² = (-2)² = 4
∴ The function is continues at -4
</span>
<span>Checking the <span>discontinuity at point -2
from the left f(-2) = </span></span><span><span>(-2+2)² = 0
</span>from the right f(-2) = -(1/2)*(-2)+1 = 2
∴ The function is jump discontinues at -2
</span>
<span>Checking the <span>discontinuity at point 4
from the left f(4) = </span></span><span><span>-(1/2)*4+1 = -1
</span>from the right f(4) = -1
but there no equality in the equation so,
</span><span>∴ The function is discontinues at 4
The correct choice is the second
point </span>discontinuity at x = 4 and jump <span>discontinuity at x = -2</span>
Shidddd lil buddy, try the 3rd one
Question:

Answer:


Step-by-step explanation:
Given

Required
Simplify
In trigonometry:

So, the expression becomes:

Simplify the denominator




Express the fraction as:





Rationalize



In trigonometry:

Hence:


Answer:
Your answer is 2/1. 2 donuts every minute.
Step-by-step explanation: The rate you are given is 30 donuts every 30 minutes. This equals 30/15.
To make a unit rate, you must make the fraction have a ratio of x/1. You can simply do this by dividing and/or simplifying the equation 30/15.