Answer:
Got your back
Explanation:
If the ions derived from different atoms are isoelectronic species, then they all have same number of electrons in their electronic shells and will have got same electronic configuration but their nuclear charge will differ because of their difference in number of protons in the nucleus. With increase in number of protons in the nucleus the electrons are more attracted towards nucleus thereby causing the decrease in ionic radius. On this principle our problem will be solved
The given ions are
7N-3
→no. of proton
=7
and
no of electron
=10
8O-2
→
no. of proton
=8
and
no of electron
=10
9F-→
no. of proton=9
and no of electron=10
11Na→
no. of proton=11
and no of electron=10
12 Mg-3→
no. of proton=12 and
no of electron=10
Hence the increasing order of ionic radius is
12Mg-3<11Na+<9F-<8O-2<7N-3
To rmember ->For isoelectronic species lower the nuclear charge higher the radius
The answer is the first choice, <u>840 candies</u>.
Given what we know, we can confirm that option A is correct in that Stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter.
<h3>What are IMFs?</h3>
IMF is the acronym used to describe intermolecular forces. These forces include all of the forces that bind molecules together, of which water has plenty. This bonding force creates a high adhesion and thus gives water its surface tension which makes it stay together in the shape of a drop.
Therefore, we can confirm that stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter, and therefore that option A is correct.
To learn more about molecular forces visit:
brainly.com/question/25863653?referrer=searchResults
Answer:
I think it's C
<u>Convection currents are identified in Earth's mantle. Heated mantle material is shown rising from deep inside the mantle, while cooler mantle material sinks, creating a convection current. It is thought that this type of current is responsible for the movements of the plates of Earth's crust.</u>
Generally speaking the larger, more massive elements are less stable, like isotopes of elements. With this said, they are less likely to react since they will become heavy and unstable. This is why chlorine is more reactive with other elements like sodium than astatine.