The equilibrium constant is a value which represents the equilibrium of a reaction. It is a reaction quotient when the reaction reached equilibrium. If Keq is greater than 1, the mixture contains mostly the products. On the other hand, if Keq is less than 1, the mixture contains the reactants. For this case, the mixture contains mostly products.
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
<span>Get into moles first. .0590 grams over 540.8 grams per mole = 1.09 x l0^-4 moles
Sr3(As04)2 = 3 Sr++(aq) plus 2 As04^-3(aq)
Ksp = (Sr++)^3(As04^-3)^2
(Sr++) = 3 X l.09 x l0^-4 = 3.27 x l0^-4
(As04^-3) = 2 x l.09 x l0^-4 = 2.18 x l0^-4
<span>Ksp = (3.27 x l0^-4)^3 (2.18 x l0^-4)^2 which equals 1.66 x 10^-18th
I hope my answer has come to your help. Thank you for posting your question here in Brainly.</span></span>
Answer:
As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Explanation:
Absorbance of light by a reagent of concentration c, is given as
A = εcl
A = Absorbance
ε = molar absorptivity
c = concentration of reagent.
l = length of light path or length of the solution the light passes through.
So, if all.other factors are held constant, If a sample for spectrophotometric analysis is placed in a 10-cm cell, the absorbance will be 10 times greater than the absorbance in a 1-cm cell.
But the reagent blank solution is called a blank solution because it lacks the given reagent. A blank solution does not contain detectable amounts of the reagent under consideration. That is, the concentration of reagent in the blank solution is 0.
Hence, the Absorbance is subsequently 0. And increasing or decreasing the path length of light will not change anything. As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Hope this Helps!!!
Answer:
Lewis dot diagrams use dots arranged around the atomic symbol to represent the electrons in the outermost energy level of an atom
Explanation: