Answer:
0.534
Step-by-step explanation:
p(0 losses) = 0.7² = 0.49
p(1 loss) = 2 x 0.3 x 0.7 = 0.42
p(2 losses) = 0.09
This is a conditional probability problem. If the number of people hospitalized is 0 or 1, then the total loss will be less than 1. However, if two people are hospitalized, the probability that the total loss will be less than 1 is 0.5. we need to exclude the 50% x 0.09 chance of a double loss costing more than 1. So
P(Cost < 1)
= 0.49 + 0.42 +0.045
= 0.955
P(0 losses | Cost < 1)
= P(0 losses and Cost < 1) / P(Cost < 1)
= 0.49 / 0.955 = 0.513
P(1 loss | Cost < 1)
= 0.42 / 0.955 = 0.440
P(2 losses | Cost < 1) = 0.045 / 0.955 = 0.047
Now take the expectation:
E[X] = (0)(0.513) + (1)(0.440) + (2)(0.047)
= 0.440 + 0.094
= 0.534