We can set it up like this, where <em>s </em>is the speed of the canoeist:

To make a common denominator between the fractions, we can multiply the whole equation by s(s-5):
![s(s-5)[\frac{18}{s} + \frac{4}{s-5} = 3] \\ 18(s-5)+4s=3s(s-5) \\ 18s - 90+4s=3 s^{2} -15s](https://tex.z-dn.net/?f=s%28s-5%29%5B%5Cfrac%7B18%7D%7Bs%7D%20%2B%20%5Cfrac%7B4%7D%7Bs-5%7D%20%3D%203%5D%20%5C%5C%2018%28s-5%29%2B4s%3D3s%28s-5%29%20%5C%5C%2018s%20-%2090%2B4s%3D3%20s%5E%7B2%7D%20-15s)
If we rearrange this, we can turn it into a quadratic equation and factor:

Technically, either of these solutions would work when plugged into the original equation, but I would use the second solution because it's a little "neater." We have the speed for the first part of the trip (9 mph); now we just need to subtract 5mph to get the speed for the second part of the trip.

The canoeist's speed on the first part of the trip was 9mph, and their speed on the second part was 4mph.
Answer:
2
Step-by-step explanation:
volume=base•width•high
2•2•2=8
Complete Question
The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad
Answer:

Step-by-step explanation:
From the question we are told that:
Population mean \mu=91
Sample Mean \=x =2.08
Standard Deviation \sigma=10
Sample size n=68
Generally the Probability that The sample mean would differ from the population mean
P(|\=x-\mu|<2.08)
From Table

T Test




Therefore From Table

600,000 and 60,000 I do believe.
Answer:
B
Step-by-step explanation:
answer is b........