Answer:
(3,2) just use a slope triangle (over 2 up 3) and do it in reverse
Step-by-step explanation:
<h3><u>Given :-</u></h3>
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
<h3>
<u>Required To Prove :-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Proof :-</u></h3>
On taking LHS
[1+(1/Tan²θ)] + [ 1+(1/Cot²θ)]
We know that
Tan θ = 1/ Cot θ
and
Cot θ = 1/Tan θ
=> (1+Cot²θ)(1+Tan²θ)
=> (Cosec² θ) (Sec²θ)
Since Cosec²θ - Cot²θ = 1 and
Sec²θ - Tan²θ = 1
=> (1/Sin² θ)(1/Cos² θ)
Since , Cosec θ = 1/Sinθ
and Sec θ = 1/Cosθ
=> 1/(Sin²θ Cos²θ)
We know that Sin²θ+Cos²θ = 1
=> 1/[(Sin²θ)(1-Sin²θ)]
=> 1/(Sin²θ-Sin²θ Sin²θ)
=> 1/(Sin²θ - Sin⁴θ)
=> RHS
=> LHS = RHS
<u>Hence, Proved.</u>
<h3><u>Answer:-</u></h3>
[1+(1/Tan²θ)]+[1+(1/Cot²θ)] = 1/(Sin²θ-Sin⁴θ)
<h3><u>Used formulae:-</u></h3>
→ Tan θ = 1/ Cot θ
→ Cot θ = 1/Tan θ
→ Cosec θ = 1/Sinθ
→ Sec θ = 1/Cosθ
<h3><u>Used Identities :-</u></h3>
→ Cosec²θ - Cot²θ = 1
→ Sec²θ - Tan²θ = 1
→ Sin²θ+Cos²θ = 1
Hope this helps!!
Answer:
The image of OH is ON.
Step-by-step explanation:
Te figure GIKMPR is a regular hexagon. The number of vertices of a regular hexagon is 6. The central angle between any two consecutive vertices is 60 degree.
The dashed line segments form 30 degree angles.
If we rotate the hexagon 180 degree about O, then the each point shifts to 6th place from its original place.
Since we rotate the hexagon 180 degree about O, so the image and preimage lies on a straight line. Because a straight line make angle of 180 degree.
The line OH and ON lies on a straight line therefore the image of OH is ON.
Answer:
1. 60 snickers
2. 20 KitKats
i cannot anwser 3 cause its not showing up somehow. Sorry.
Step-by-step explanation: