Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
Three consecutive even integers can be represented by x, (x+2), and (x+4).
(x + (x + 2) + (x + 4)) - 10 = -22 Get rid of the parentheses
x + x + 2 + x + 4 - 10 = -22 Combine like terms (x + x + x) and (2 + 4 - 10)
3x - 4 = -22 Add 4 to both sides
3x = -18 Divide
x = -6
Check you work.
x = -6
x + 2 = -4
x + 4 = -2
(-6 - 4 - 2) - 10 = 22
-12 - 10 = -22
So, your three integers are -6, -4, and -2 .
slope is change in y over change in x
use 2 points from the table so -3,-21 and -6,-39
change in Y: -39 - -21 = -18
change in x = -6 - -3 = -3
slope = -18/-3 = 6
slope = 6
Answer:
Given
if p:q=2/3:3 and p:r=3/4:1/2, calculate the ratio p:q:r giving your answer in its simplest form
We need to find the ratio p:q:r
Given p:q = 2/3 : 3 = 2/3 / 3 = 2/9
and p : r = 3/4 : 1/2 = 3/4 / 1/2 = 3/2
Now p/q = 2/9 and p/r = 3/2
We need to make p equal numerators so we get
p/q = 2/9 x 3/3 = 6/27 and
p/r = 2/3 x 3/2 = 6/4
Therefore p : q : r = 6 : 27 : 4