Answer:
y axis
Step-by-step explanation:
Answer:
B. (x-3)
Step-by-step explanation:
Factorise the equation with suitable values.
In order to get 6 from x²-5x+6,
as an example, use the numbers 3 and 2.
We will get to factorise it to become (x-3)(x-2)
Based on the choice answers given, the answer is B. (x-3)
1/2sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))
The area of a triangle is equal to 1/2bh (one half base times height). Since this is a right triangle, the base and height are the two legs connected to the 90* angle. To find the values of these sides, we will use Pythagorean Theorem, root a squared plus b squared.
Short leg: <x(1),y(1)>
This leg can be seen as the hypotenuse of an invisible right triangle. The x value, x(1), is how far over the x value has gone from the origon at x=0. Imagine a leg alone the x-axis, going from (0,0) to (x(1),0). The y value of the point, y(1), works the same way. This leg will go from our previous mark at (x(1),0) to the point (x(1),y(1)). This shows that the short leg of the main triangle is the hypotenuse, with a height of y(1) and base of x(1). Pythagoreum Theorem shows that the length of this leg is equal to sqrt(x_1^2+y_1^2).
Long leg: <x(2), y(2)>
The same process works here, giving us sqrt(x_2^2+y_2^2).
Now for the area, we have the b and h values. Our equation reads 1/2sqrt(x_1^2+y_1^2)sqrt(x_2^2+y_2^2).
But we can simplify this (yay). The two square roots can be written together as sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))
So the correct answer is 1/2sqrt((x_1^2+y_1^2)(x_2^2+y_2^2))
I'm not sure but I think if so
1 SAS
2 SSS
3 SAS
7 SAS
8 SSS
9 SAS
10 AAS
11 SSS
Answer:
Condition 1: y>0
Condition 2: x+y>-2
Step-by-step explanation:
We are told that we have a set of points in the Cartesian system (i.e. x-y coordinate), so we can define our point as:

We are given two conditions and we want to create a system of inequalities. Now, generally speaking, inequalities are expressions relating mathematical expressions through 'comparison' (i.e. less than, greater than, or less/greater and equal to) usually recognized by
,
,
and
, respectively.
So in our case let set up our inequalities.
Condition 1: the y-coordinate is positive
This can be mathematically translated as
(i.e.
is greater than 0, therefore positive)
Condition 2: the sum of the coordinates is more than -2
This can be mathematically translated as

(i.e. the summation of the two coordinates is greater than -2 but not equal to).
The system of inequalities described by the two conditions is:
