First, let me do the Mathematical part of that, and then I shall explain the theory behind it.
Mathematical part:
We are going to multiply 513 with 46. So the two partial products that we are going to choose are 40 and 6.
Multiply 513 with 6 first.
513
x46
--------------------------
18 (as 6*3 = 18)
60 (as 6*10 = 60; In 513, the digit at tenths place is 1, so 1*10=10)
3000 (as 6*500 = 3000; In 513, 5 is at hundredth place, so 5*100=500)
120 (as 40*3 = 120; since 4 is at the tenth place, so 4*10=40)
400 (as 40*10 = 400)
20000 (as 40*500 = 20000)
--------------------------
23598 (Add all of them)
Theory:
As you can see above that we have chosen the two partial products individually which are 6 and 40. Since 4 in 46 is in tenth place, we have to consider it 40 (since 4*10 = 40). One by one, we first multiply 6 with 513. Then we move to the tenth place, and multiply 513 with 40. At the end, we have added all the results we found after multiplication.
Check: If we check the multiplication result by using the calculator, we would get the same result (23598).
Another Method (instant):
513 * (40+6) = (513*40) + (513*6) = 23598.
I think it’s 96 I might be wrong sorry if I am
Answer:
and 
The ordered pair solutions are
,
,
, and
.
Step-by-step explanation:
I'm assuming the system is
:


























Therefore,
and 
The ordered pair solutions are
,
,
, and
.
What is the mean of your data 341, 237, 143,185,248,403,374,451,84,267,178,258,284,465,224
weqwewe [10]
Answer:
The mean for the given set of numbers is 276.133..... repeated
Step-by-step explanation:
To find this you must add the numbers up together and divide them by the amount of numbers there is.
The unit vector is given by the following formula:
a '= (a) / (lal)
Where,
a: vector a
lal: Vector module a
We are looking for the module:
lal = root ((- 15) ^ 2 + (8) ^ 2)
lal = 17
Same direction:
a = -15i + 8j
The unit vector is:
a '= (1/17) * (- 15i + 8j)
Opposite direction:
a = 15i - 8j
The unit vector is:
a '= (1/17) * (15i - 8j)
Answer:
a unit vector that has the same direction as the vector a is:
a '= (1/17) * (- 15i + 8j)
a unit vector that has the opposite direction of the vector a is:
a '= (1/17) * (15i - 8j)