When roots of polynomials occur in radical form, they occur as two conjugates.
That is,
The conjugate of (a + √b) is (a - √b) and vice versa.
To show that the given conjugates come from a polynomial, we should create the polynomial from the given factors.
The first factor is x - (a + √b).
The second factor is x - (a - √b).
The polynomial is
f(x) = [x - (a + √b)]*[x - (a - √b)]
= x² - x(a - √b) - x(a + √b) + (a + √b)(a - √b)
= x² - 2ax + x√b - x√b + a² - b
= x² - 2ax + a² - b
This is a quadratic polynomial, as expected.
If you solve the quadratic equation x² - 2ax + a² - b = 0 with the quadratic formula, it should yield the pair of conjugate radical roots.
x = (1/2) [ 2a +/- √(4a² - 4(a² - b)]
= a +/- (1/2)*√(4b)
= a +/- √b
x = a + √b, or x = a - √b, as expected.
Answer:
1.
( in this inequality, the time can be less than or equal to 45, but no more than 45)
2.
(Mario's height is more than 60.)
3.
(More than 8000 fans attended.)
4x^2-9
(2x+3)(2x-3)
To verify use distributed
2x(2x) +2x(-3)+3(2x)+3(-3)
4x^2-6x+6x-9
4x^2+0-9
4x^2-9