The answer is B, and here's why. Set up a table for "there" and "back" and use the distance = rate * time formula, like this:
d r t
there d 450 t
back d 400 1-t
Let me explain this table to you. The distance is d, we don't know what it is, that's what we are actually looking for. We only know that if we go somewhere from point A to point B, then back again to point A, the distance there is the same as the distance back. Hence, the d in both spaces. There he flew 450 mph, back he flew 400 mph. If the total distance was 1 hour, he flew an unknown time there and one hour minus that unknown time back. For example, if he flew for 20 minutes there, one hour minus 20 minutes means that he flew 60 minutes - 20 minutes = 40 minutes back. See? Now, because the distance there = the distance back, we can set the rt in both equal to each other. If d = rt there and d = rt back and the d's are the same, then we can set the rt's equal to each other. 450t = 400(1-t) and
450t = 400 - 400t and 850t = 400. Solve for t to get t = .47058. Now, t is time, not the distance and we are looking for distance. So multiply that t value by the rate (cuz d = r*t) to get that the distance one way is
d = 450(.470580 and d = 211. 76 or, rounded like you need, 212.
13.60 because you add the coupon discount back on and subtract tax cost and divide by 2
Sorry I can’t answer this right now but I’ll will answer later
Answer:
ab is equal to 5
Step-by-step explanation:
Answer:
Total time taken by walking, running and cycling = 22 minutes.
Step-by-step explanation:
Let the speed of walking = x
As given,
The distance of walking = 1
Now,
As 
⇒ Time traveled by walking = 
Now,
Given that - He runs twice as fast as he walks
⇒Speed of running = 2x
Also given distance traveled by running = 1
Time traveled by running = 
Now,
Given that - he cycles one and a half times as fast as he runs.
⇒Speed of cycling =
(2x) = 3x
Also given distance traveled by cycling = 1
Time traveled by cycling = 
Now,
Total time traveled = Time traveled by walking + running + cycling
=
+
+ 
= 
If he cycled the three mile , then total time taken =
+
+
= x
Given,
He takes ten minutes longer than he would do if he cycled the three miles
⇒x + 10 = 
⇒
⇒
⇒x =
= 12
⇒x = 12
∴ we get
Total time traveled by walking + running + cycling =
min