The given question is incomplete. The complete question is:
Photosynthesis reactions in green plants use carbon dioxide and water to produce glucose (C6H12O6) and oxygen. A plant has 88.0 g of carbon dioxide and 64.0 g of water available for photosynthesis. Determine the mass of glucose (C6H1206) produced
Answer: 60.0 g of glucose
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
6 moles of
require = 6 moles of
Thus 2.0 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product.
As 6 moles of
give = 1 moles of glucose
Thus 2.0 moles of
give =
of glucose
Mass of glucose =
Thus 60.0 g of glucose will be produced from 88.0 g of carbon dioxide and 64.0 g of water
If each gas sample has the same temperature and pressure, which has the greatest volume? Since hydrogen gas has the lowest molar mass of the set, 1 g will have the greatest number of moles and therefore the greatest volume. What is the Ideal Gas Law?
Answer:
Increases, remain constant
Explanation:
In the light spectrum, the photons with a higher frequency (hence smaller wavelengths) have higher energy. The lower the energy the lower the frequency and longer the wavelengths. The intensity of light does not change the energy levels of these photons. The higher the intensity the higher the density of the photoelectrons.
On Earth it is relatively rare—5.2 ppm by volume in the atmosphere. Most terrestrial helium<span> present today is created by the natural radioactive decay of heavy radioactive elements (thorium and uranium, although there are other examples), as the alpha particles emitted by such decays consist of </span>helium<span>-4 nuclei.</span>
Nolur acil lütfen yalvarırım sana da hayırlı