Explanation:
The answer is to this question is
60 m/s.
The correct conditions for measuring reduction potentials (the tendency to acquire electrons and become reduced), is 25C and 1M (or 1 mole/litre) for reactants - ANSWER B.
1 mole of any gas occupy 22.4 L at STP (standard temperature and pressure, 0°C and 1 atm).
Let given gases be 1 mole. So their volumes will be the same, 22.4 liters.
Density is the ratio of mass to volume.
By formula; density= mass/volume; d=m/V
To find out masses of gases, do the mole calculation.
By formula; mole= mass/molar mass; n= m/M; m= n*M
Molar masses are calculated as
1. C₂H₆ (ethane) = 2*12 g/mol + 6*1 g/mol= 30 g/mol
2. NO (nitrogen monoxide) = 1*14 g/mol + 1*16 g/mol= 30 g/mol
3. NH₃ (ammonia) = 1*14 g/mol + 3*1 g/mol= 17 g/mol
4. H₂O (water) = 2*1 g/mol + 1*16 g/mol= 18 g/mol
5. SO₂ (sulfur dioxide) = 1*32 g/mol + 2*16 g/mol= 64 g/mol
Use Periodic Table to get atomic mass of elements.
Since their volumes are equal, compounds having the same molar mass will have the same density.
Recall the formula d= m/V.
Ethane and nitrogen monoxide have the same density.
The answer is C₂H₆ and NO.
Answer:
b. HCOOH/ NaHCOO.
Explanation:
A buffer system may be formed in one of two forms:
- A weak acid with its conjugate base.
- A weak base with its conjugate acid.
Chose the pairs below that you could use to make a buffered solution.
a. HCI/NaOH. NO. HCl is a strong acid and NaOH is a strong base.
b. HCOOH/ NaHCOO. YES. HCOOH is a weak acid and HCOO⁻ (coming from NaHCOO) is its conjugate base.
c. HNO₂/H₂SO₃. NO. Both are acids and they are unrelated to each other.
d. NaNO₃/ HNO₃. NO. HNO₃ is a strong acid.