Answer:
(C) Oxygen because it has the strongest attractive force and the largest
electronegativity
Explanation:
Oxygen will be most reactive
configuration = 
As oxygen need only two electrons to complete its octet.
Oxygen will have stronger force than nitrogen as it will tend to pull electrons more to complete its octet. Also along the period electronegativity increases so oxygen has higher electronegativity than nitrogen
Explanation
NaCl: Ionic crystal lattice forces
Hg: Metallic bonding
CO₂: London dispersion forces
CH₄: London dispersion forces
Li₂O: Ionic crystal lattice forces
Ag: Metallic bonds
Ionic crystal lattice forces are strong electrostatic force of attraction between oppositely charged ions arranged into a crystal lattice of ionic compound. NaCl and Li₂O are ionic compounds
London dispersion forces holds the molecules of carbon dioxide and methane. They are weak attractions found between non-polar (and polar) molecules.
Metallic bonds exists between Mercury and Gold atoms. This is due to sea of electrons present.
To be able to write correctly the equilibrium expression of a reaction, we need to know the balanced reaction and the phases of the substances in the reaction. When substances are solid, pure liquid they are not included in the expression. We do as follows:
<span>4KO2(s) + 2H2O(g) = 4KOH(s) + 3O2(g)
K = [O2]^3 / [H2O]^2</span>
Answer:
the correct answer to your question is 20
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.