Explanation:
Edit
An ecological pyramid (also trophic pyramid, Eltonian pyramid, energy pyramid, or sometimes food pyramid) is a graphical representation designed to show the biomass or bioproductivity at each trophic level in a given ecosystem.
A pyramid of energy represents how much energy, initially from the sun, is retained or stored in the form of new biomass at each trophic level in an ecosystem. Typically, about 10% of the energy is transferred from one trophic level to the next, thus preventing a large number of trophic levels. Energy pyramids are necessarily upright in healthy ecosystems, that is, there must always be more energy available at a given level of the pyramid to support the energy and biomass requirement of the next trophic level.
A pyramid of energy shows how much energy is retained in the form of new biomass at each trophic level, while a pyramid of biomass shows how much biomass (the amount of living or organic matter present in an organism) is present in the organisms. There is also a pyramid of numbers representing the number of individual organisms at each trophic level. Pyramids of energy are normally upright, but other pyramids can be inverted or take other shapes.
Ecological pyramids begin with producers on the bottom (such as plants) and proceed through the various trophic levels (such as herbivores that eat plants, then carnivores that eat flesh, then omnivores that eat both plants and flesh, and so on). The highest level is the top of the food chain.
Answer: adult tissues
Explanation: Adult stem cells. These stem cells are found in small numbers in most adult tissues, such as bone marrow or fat. Compared with embryonic stem cells, adult stem cells have a more limited ability to give rise to various cells of the body.
Answer:
<em><u>Glycolysis produces pyruvate, ATP, and NADH by oxidizing glucose.</u></em>
Explanation:
Glycolysis is an oxidation reaction in which glucose reacts with oxygen molecules and oxidized. By oxidizing glucose, it produces pyruvate, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotides (NADH). Glycolysis has two phases. In the first phase, 2 ATP molecules are invested for the phosphorylation of glucose to break down into a simpler one. In the second phase of glycolysis, 4 ATP molecules are earned back with 2 NADH and a simpler form of glucose (6C) to pyruvate (3C) by oxidizing glucose.
Explanation:
It's a piece of cake. Here we are provided with the information that a human cell with a chromosome number of 46, undergoes meiosis, what number of chromosomes will be in each daughter cell.
To solve this question first you must be aware about the word meiosis. Meiosis is a type of cell division. It's end product results in the formation of four daughter cells each having half the number of chromosomes as that of the parent cell.
Did you notice? That formed daughter cell will have half the number of chromosomes as that of the parent cell. Hence, 23 chromosomes will be in each daughter cell.
How many places are there for electrons in the second shell of an atom? The answer is C) 8 electrons