1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
3 years ago
12

Which plane figure generates a cylinder when it rotates about the dashed line?

Mathematics
1 answer:
Marina CMI [18]3 years ago
7 0
I am not exactly sure, but I am almost positive it is a spere 
You might be interested in
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Solve for r.<br> -13 = r/9 +8
love history [14]
R/9 = -21
Multiply by 9
r = -189
4 0
2 years ago
Read 2 more answers
Simplify.<br> 10u -4u<br> Please help
vovikov84 [41]

Answer:

6u

Step-by-step explanation:

The two terms 10u and 4u are like terms because they both carry the same variable (u) with the same degree (1). So, we can just subtract them as if they were normal numbers 10 - 4:

10u - 4u = 6u

Thus, the answer is 6u.

Hope this helps!

8 0
3 years ago
Read 2 more answers
Solve the whole problem i give brainliest please help me.
gladu [14]

Answer:

165 is greater than or equal to 17.75x+5.25; 9 is greater than or equal to x

Step-by-step explanation:

The problem states that they have no more than $165. This means that they either use all the money, or they have leftover money, which means you need to use the 'greater than or equal to' sign. It says that tickets are $17.75 a person, and we're trying to find the number of people (x). You can write this as 17.75x. There is also a parking fee to add on to the equation, which is represented as +5.25. Now, we can solve!

I'm going to use an equal sign to replace the inequality symbol, but make sure to add the symbol at the end of the problem.

165=17.75x+5.25

159.75=17.75x

9=x

Our final answer is 9 is greater than or equal to x. Hope this helps!

8 0
2 years ago
Read 2 more answers
I need help on finding m
EastWind [94]

Answer:

39°

Step-by-step explanation:

\angle RUS +\angle SUT = \angle RUT\\\\5x-4+3x+6 = 90\\\\8x+2=90\\\\8x=88\\\\x=11

and now for SUT

\angle SUT = 3(11)+6= 33+6 = 39

4 0
2 years ago
Read 2 more answers
Other questions:
  • What is the nominal annual interest rate
    6·2 answers
  • I can use some help guys I don’t want to fail pleaseee help greatly appreciated
    12·2 answers
  • In a valid probability distribution, each probability must be between 0 and 1, inclusive, and the probabilities must add up to 1
    15·2 answers
  • A popular soft drink is sold in 2-liter (2000 milliliter) bottles. Because of variation in the filling process, bottles have a m
    15·1 answer
  • Circle the common factors of 20w and 40wz. Options are 10, 20w, 10xz, 5z, 2w, z, 9w, or w. Can you please explain how you guys g
    13·2 answers
  • Which of the following represents the factorization of the trinomial below?
    14·1 answer
  • 6 times the diffrence of 12 and 9 divided by 3​
    9·1 answer
  • 2x + 3x + 20 + 10x - 5 = 10x + 16
    10·2 answers
  • Help if correct will give brainless
    13·1 answer
  • PLEASE PLEASE HELP ME ASAPPP
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!